test_that("simple working example", { # basic example one cohort entry # id 1 - in cohort for 5 days, exits the database after 25 # id 2 - in cohort for 15 days, exits the database after 15 # id 3 - in cohort for 20 days, exits the database after 25 # id 4 - in cohort for 20 days, exits the database after 25 cdm <- mockDrugUtilisation( con = connection(), writeSchema = schema(), drug_exposure = dplyr::tibble( drug_exposure_id = 1:4, person_id = c(1, 2, 3, 4), drug_concept_id = c(1125360), drug_exposure_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), drug_exposure_end_date = as.Date(c("2000-01-05", "2003-01-15", "2020-01-20", "2021-01-20")), drug_type_concept_id = 0, quantity = 0 ), dus_cohort = dplyr::tibble( cohort_definition_id = 1, subject_id = c(1, 2, 3, 4), cohort_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), cohort_end_date = as.Date(c("2000-01-05", "2002-01-15", "2010-01-20", "2011-01-20")) ), observation_period = dplyr::tibble( observation_period_id = 1:4, person_id = 1:4, observation_period_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), observation_period_end_date = as.Date(c("2000-01-25", "2002-01-15", "2010-01-25", "2011-01-25")), period_type_concept_id = 0 ) ) ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered() expect_true(inherits(ppc, "summarised_result")) # from first cohort entry to last cohort exit expect_true(max(as.numeric(ppc$additional_level)) == clock::date_count_between(start = as.Date("2000-01-01"), end = as.Date("2000-01-20"), "day")) ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(followUpDays = 30) expect_true(inherits(ppc, "summarised_result")) expect_true(max(as.numeric(ppc$additional_level)) == 30) # everyone treated on day zero expect_true(ppc |> dplyr::filter(additional_level == 0, estimate_name == "ppc") |> dplyr::pull("estimate_value") == "100") # on day 4, 4 of 4 people being treated expect_true(ppc |> dplyr::filter(additional_level == 4, estimate_name == "ppc") |> dplyr::pull("estimate_value") == "100") # on day 6, 3 of 4 people being treated expect_true(ppc |> dplyr::filter(additional_level == 6, estimate_name == "ppc") |> dplyr::pull("estimate_value") == "75") # on day 16, 2 of 3 people being treated, 1 has left expect_true(ppc |> dplyr::filter(additional_level == 16, estimate_name == "ppc") |> dplyr::pull("estimate_value") == as.character(round((2/3)*100, 2))) # on day 21, 0 of 3 people being treated, 1 has left expect_true(ppc |> dplyr::filter(additional_level == 21, estimate_name == "ppc") |> dplyr::pull("estimate_value") == "0") mockDisconnect(cdm = cdm) }) test_that("multiple cohort entries", { # id 1 - in cohort for 5 days, out for 5 days, in again for 5, exits database after 20 # id 2 - in cohort for 15 days, exits the database after 25 cdm <- mockDrugUtilisation( con = connection(), writeSchema = schema(), drug_exposure = dplyr::tibble( drug_exposure_id = 1:3, person_id = c(1, 1, 2), drug_concept_id = c(1125360), drug_exposure_start_date = as.Date(c("2000-01-01", "2000-01-10", "2010-01-01")), drug_exposure_end_date = as.Date(c("2000-01-05", "2000-01-15", "2010-01-15")), drug_type_concept_id = 0, quantity = 0 ), dus_cohort = dplyr::tibble( cohort_definition_id = 1, subject_id = c(1, 1, 2), cohort_start_date = as.Date(c("2000-01-01", "2000-01-10", "2010-01-01")), cohort_end_date = as.Date(c("2000-01-05", "2000-01-15", "2010-01-15")) ), observation_period = dplyr::tibble( observation_period_id = 1:2, person_id = 1:2, observation_period_start_date = as.Date(c("2000-01-01", "2010-01-01")), observation_period_end_date = as.Date(c("2000-01-20", "2010-01-25")), period_type_concept_id = 0 ) ) ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(followUpDays = 25) # everyone treated on day four expect_true(ppc |> dplyr::filter(additional_level == 4, estimate_name == "ppc") |> dplyr::pull("estimate_value") == "100") # one of two treated on day 6 expect_true(ppc |> dplyr::filter(additional_level == 6, estimate_name == "ppc") |> dplyr::pull("estimate_value") == "50") # both treated on day 10 expect_true(ppc |> dplyr::filter(additional_level == 10, estimate_name == "ppc") |> dplyr::pull("estimate_value") == "100") # one person left on day 21, untreated expect_true(ppc |> dplyr::filter(additional_level == 10, estimate_name == "ppc") |> dplyr::pull("estimate_value") == "100") expect_true(ppc |> dplyr::filter(additional_level == 21, estimate_name == "ppc") |> dplyr::pull("estimate_value") == "0") mockDisconnect(cdm = cdm) }) test_that("multiple cohorts", { # id 1 - in cohort 1 for 5 days, exits the database after 25 # id 2 - in cohort 1 for 15 days, exits the database after 15 # id 3 - in cohort 1 for 20 days, exits the database after 25 # id 4 - in cohort 2 for 25 days, exits the database after 30 cdm <- mockDrugUtilisation( con = connection(), writeSchema = schema(), drug_exposure = dplyr::tibble( drug_exposure_id = 1:4, person_id = c(1, 2, 3, 4), drug_concept_id = c(1125360), drug_exposure_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), drug_exposure_end_date = as.Date(c("2000-01-05", "2003-01-15", "2020-01-20", "2021-01-20")), drug_type_concept_id = 0, quantity = 0 ), dus_cohort = dplyr::tibble( cohort_definition_id = c(1,1,1,2), subject_id = c(1, 2, 3, 4), cohort_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), cohort_end_date = as.Date(c("2000-01-05", "2002-01-15", "2010-01-20", "2011-01-25")) ), observation_period = dplyr::tibble( observation_period_id = 1:4, person_id = 1:4, observation_period_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), observation_period_end_date = as.Date(c("2000-01-25", "2002-01-15", "2010-01-25", "2011-01-30")), period_type_concept_id = 0 ) ) ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered() ppc_cohort_1 <- ppc |> dplyr::filter(group_level == "cohort_1") ppc_cohort_2 <- ppc |> dplyr::filter(group_level == "cohort_2") # cohort 1 should have follow up end after 20 days, cohort 2 after 25 days expect_true(max(as.numeric(ppc_cohort_1$additional_level)) == clock::date_count_between(start = as.Date("2000-01-01"), end = as.Date("2000-01-20"), "day")) expect_true(max(as.numeric(ppc_cohort_2$additional_level)) == clock::date_count_between(start = as.Date("2000-01-01"), end = as.Date("2000-01-25"), "day")) # everyone treated on day zero expect_true(ppc_cohort_1 |> dplyr::filter(additional_level == 0, estimate_name == "denominator_count") |> dplyr::pull("estimate_value") == "3") expect_true(ppc_cohort_1 |> dplyr::filter(additional_level == 0, estimate_name == "outcome_count") |> dplyr::pull("estimate_value") == "3") expect_true(ppc_cohort_2 |> dplyr::filter(additional_level == 0, estimate_name == "denominator_count") |> dplyr::pull("estimate_value") == "1") expect_true(ppc_cohort_2 |> dplyr::filter(additional_level == 0, estimate_name == "outcome_count") |> dplyr::pull("estimate_value") == "1") # on day 12, # cohort 1 - 2 of 3 people being treated expect_true(ppc_cohort_1 |> dplyr::filter(additional_level == 12, estimate_name == "ppc") |> dplyr::pull("estimate_value") == as.character(round((2/3)*100, 2))) # cohort 2 - 1 of 1 people being treated expect_true(ppc_cohort_2 |> dplyr::filter(additional_level == 12, estimate_name == "ppc") |> dplyr::pull("estimate_value") == "100") # if one cohort is empty it should still work cdm$dus_cohort <- cdm$dus_cohort |> dplyr::filter(cohort_definition_id == 2) expect_no_error(cdm$dus_cohort |> summariseProportionOfPatientsCovered(followUpDays = 25)) expect_no_error(cdm$dus_cohort |> summariseProportionOfPatientsCovered()) expect_no_error(cdm$dus_cohort |> summariseProportionOfPatientsCovered(cohortId = 1)) mockDisconnect(cdm = cdm) }) test_that("stratification", { # basic example one cohort entry # id 1 - in cohort for 5 days, break, 5 more days, exits the database after 25 # id 2 - in cohort for 15 days, exits the database after 15 # id 3 - in cohort for 20 days, exits the database after 25 # id 4 - in cohort for 20 days, exits the database after 25 cdm <- mockDrugUtilisation( con = connection(), writeSchema = schema(), dus_cohort = dplyr::tibble( cohort_definition_id = 1, subject_id = c(1, 1, 2, 3, 4), cohort_start_date = as.Date(c("2000-01-01","2000-01-10", "2002-01-01", "2010-01-01", "2011-01-01")), cohort_end_date = as.Date(c("2000-01-05","2000-01-15", "2002-01-15", "2010-01-20", "2011-01-20")) ), observation_period = dplyr::tibble( observation_period_id = 1:4, person_id = 1:4, observation_period_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), observation_period_end_date = as.Date(c("2000-01-25", "2002-01-15", "2010-01-25", "2011-01-25")), period_type_concept_id = 0 ) ) cdm$dus_cohort <- cdm$dus_cohort |> dplyr::mutate(var0 = "group", var1 = dplyr::if_else(subject_id == 1, "group_1", "group_2"), var2 = dplyr::if_else(subject_id %in% c(1,2), "group_a", "group_b")) ppc_no_strata <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(followUpDays = 30) ppc_no_strata_2 <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(followUpDays = 30, strata = c("var0")) expect_identical(ppc_no_strata |> dplyr::select(!c("strata_name","strata_level")), ppc_no_strata_2 |> dplyr::filter(strata_level == "group") |> dplyr::select(!c("strata_name","strata_level"))) ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(followUpDays = 30, strata = c("var1")) expect_identical(ppc_no_strata, ppc |> dplyr::filter(strata_level == "overall")) ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(followUpDays = 30, strata = c("var1")) # var 1 - group_1 - only person one # day 0 expect_true(ppc |> dplyr::filter(additional_level == 0, strata_level == "group_1", estimate_name == "denominator_count") |> dplyr::pull("estimate_value") == "1") expect_true(ppc |> dplyr::filter(additional_level == 0, strata_level == "group_1", estimate_name == "outcome_count") |> dplyr::pull("estimate_value") == "1") expect_true(ppc |> dplyr::filter(additional_level == 0, strata_level == "group_2", estimate_name == "denominator_count") |> dplyr::pull("estimate_value") == "3") expect_true(ppc |> dplyr::filter(additional_level == 0, strata_level == "group_2", estimate_name == "outcome_count") |> dplyr::pull("estimate_value") == "3") # day 1 expect_true(ppc |> dplyr::filter(additional_level == 1, strata_level == "group_1", estimate_name == "denominator_count") |> dplyr::pull("estimate_value") == "1") expect_true(ppc |> dplyr::filter(additional_level == 1, strata_level == "group_1", estimate_name == "outcome_count") |> dplyr::pull("estimate_value") == "1") expect_true(ppc |> dplyr::filter(additional_level == 1, strata_level == "group_2", estimate_name == "denominator_count") |> dplyr::pull("estimate_value") == "3") expect_true(ppc |> dplyr::filter(additional_level == 1, strata_level == "group_2", estimate_name == "outcome_count") |> dplyr::pull("estimate_value") == "3") # day 8 expect_true(ppc |> dplyr::filter(additional_level == 8, strata_level == "group_1", estimate_name == "denominator_count") |> dplyr::pull("estimate_value") == "1") expect_true(ppc |> dplyr::filter(additional_level == 8, strata_level == "group_1", estimate_name == "outcome_count") |> dplyr::pull("estimate_value") == "0") expect_true(ppc |> dplyr::filter(additional_level == 8, strata_level == "group_2", estimate_name == "denominator_count") |> dplyr::pull("estimate_value") == "3") expect_true(ppc |> dplyr::filter(additional_level == 8, strata_level == "group_2", estimate_name == "outcome_count") |> dplyr::pull("estimate_value") == "3") # multiple strata # person 1 is in var1 - group_1 and var2 group_a # person 2 is in var1 - group_2 and var2 group_a # person 3 and 4 is in var1 - group_2 and var2 group_b ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(strata = list(c("var1"), c("var2"), c("var1", "var2"))) # g1 and ga ppc_g1_ga <- ppc |> dplyr::filter(strata_level == "group_1 &&& group_a") ppc_g1 <- ppc |> dplyr::filter(strata_level == "group_1") # only person 1 expect_identical(ppc_g1_ga |> dplyr::select(!c("strata_name","strata_level")), ppc_g1_ga |> dplyr::select(!c("strata_name","strata_level"))) # g2 and gb - person 3 and 4 ppc_g2_gb <- ppc |> dplyr::filter(strata_level == "group_2 &&& group_b") expect_true(ppc_g2_gb |> dplyr::filter(additional_level == 0, estimate_name == "denominator_count") |> dplyr::pull("estimate_value") == "2") expect_true(ppc_g2_gb |> dplyr::filter(additional_level == 0, estimate_name == "outcome_count") |> dplyr::pull("estimate_value") == "2") expect_true(ppc_g2_gb |> dplyr::filter(additional_level == 1, estimate_name == "denominator_count") |> dplyr::pull("estimate_value") == "2") expect_true(ppc_g2_gb |> dplyr::filter(additional_level == 1, estimate_name == "outcome_count") |> dplyr::pull("estimate_value") == "2") #nobody in g1 and gb ppc_g1_gb <- ppc |> dplyr::filter(strata_level == "group_1 &&& group_b") expect_true(nrow(ppc_g1_gb) == 0) mockDisconnect(cdm = cdm) }) test_that("expected errors", { cdm <- mockDrugUtilisation( con = connection(), writeSchema = schema(), dus_cohort = dplyr::tibble( cohort_definition_id = c(1,1,1,2), subject_id = c(1, 2, 3, 4), cohort_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), cohort_end_date = as.Date(c("2000-01-05", "2002-01-15", "2010-01-20", "2011-01-25")) ), observation_period = dplyr::tibble( observation_period_id = 1:4, person_id = 1:4, observation_period_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), observation_period_end_date = as.Date(c("2000-01-25", "2002-01-15", "2010-01-25", "2011-01-30")), period_type_concept_id = 0 ) ) ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered() # no error if empty cohort table expect_warning(ppc <- cdm$dus_cohort |> dplyr::filter(subject_id == 99) |> summariseProportionOfPatientsCovered()) expect_true(nrow(ppc) == 0) # if cohort ID exists no error ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(cohortId = 2) expect_true(all(ppc$group_level == "cohort_2")) # but error if cohort id not in settings expect_error(ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(cohortId = 99)) # followUpDays must be a single number above zero expect_error(ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(followUpDays = -10)) expect_error(ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(followUpDays = c(1,2))) expect_error(ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(followUpDays = "a")) # strata variable must exist expect_error(ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(strata = list("not_a_column"))) mockDisconnect(cdm = cdm) }) test_that("suppression", { cdm <- mockDrugUtilisation( con = connection(), writeSchema = schema(), drug_exposure = dplyr::tibble( drug_exposure_id = 1:4, person_id = c(1, 2, 3, 4), drug_concept_id = c(1125360), drug_exposure_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), drug_exposure_end_date = as.Date(c("2000-01-05", "2003-01-15", "2020-01-20", "2021-01-20")), drug_type_concept_id = 0, quantity = 0 ), dus_cohort = dplyr::tibble( cohort_definition_id = 1, subject_id = c(1, 2, 3, 4), cohort_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), cohort_end_date = as.Date(c("2000-01-05", "2002-01-15", "2010-01-20", "2011-01-20")) ), observation_period = dplyr::tibble( observation_period_id = 1:4, person_id = 1:4, observation_period_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), observation_period_end_date = as.Date(c("2000-01-25", "2002-01-15", "2010-01-25", "2011-01-25")), period_type_concept_id = 0 ) ) ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered() ppc_suppressed <- omopgenerics::suppress(ppc, 4) expect_true(ppc_suppressed |> dplyr::filter(additional_level == 0, estimate_name == "denominator_count") |> dplyr::pull("estimate_value") == "4") expect_true(is.na(ppc_suppressed |> dplyr::filter(additional_level == 15, estimate_name == "denominator_count") |> dplyr::pull("estimate_value"))) mockDisconnect(cdm = cdm) })