getInputDb <- function() { drug_exposure <- tibble::tibble( drug_exposure_id = as.integer(c(1, 2, 3, 4, 5, 6, 7)), person_id = as.integer(c(1, 2, 3, 4, 5, 6, 7)), drug_concept_id = as.integer(c(40162522, 40162522, 1127078, 1127078, 1127078, 1127433, 1127433)), ingredient_concept_id = rep(1125315, 7), ingredient = rep("acetaminophen", 7), drug_exposure_start_date = as.Date(c("2016-01-01","2017-01-01",NA,"2019-01-01","2020-01-01","2021-01-01","2022-01-01")), drug_exposure_end_date = as.Date(c("2016-01-02","2017-01-03",NA,"2019-01-05","2020-01-06","2021-01-07","2022-01-08")), verbatim_end_date = as.Date(c("2016-01-02","2017-01-03",NA,"2019-01-05","2020-01-06","2021-01-07","2022-01-08")), days_supply = as.integer(c(1,3,NA,4,5,6,7)), quantity = c(10,20,1,NA,2,3,NA), drug_type_concept_id = as.integer(rep(0, 7)), stop_reason = rep("0", 7), refills = as.integer(rep(0, 7)), sig = rep("0", 7), route_concept_id = as.integer(rep(0, 7)), lot_number = rep("0", 7), provider_id = as.integer(rep(0, 7)), visit_occurrence_id = as.integer(rep(0, 7)), drug_source_value = rep("0", 7), drug_source_concept_id = as.integer(rep(0, 7)), route_source_value = rep("0", 7), dose_unit_source_value = rep("0", 7) ) drug_strength <- tibble::tibble( drug_concept_id = as.integer(c(40162522, 1127078, 1127433)), ingredient_concept_id = as.integer(rep(1125315, 3)), amount_value = c(325,160,325), denominator_value = rep(as.numeric(NA), 3), numerator_value = rep(as.numeric(NA), 3), numerator_unit_concept_id = as.integer(rep(as.numeric(NA), 3)), denominator_unit_concept_id = as.integer(rep(as.numeric(NA), 3)), amount_unit_concept_id = as.integer(rep(8576,3)), valid_start_date = as.Date(rep("1970-01-01",3)), valid_end_date = as.Date(rep("2099-12-31",3)), invalid_reason = as.character(rep("none",3)) ) concept_relationship <- data.frame( concept_id_1 = as.integer(c(40162522,1127078, 1127433)), concept_id_2 = as.integer(rep(19082573,3)), relationship_id = c("RxNorm has dose form","RxNorm has dose form","RxNorm has dose form"), valid_start_date = as.Date(rep("1970-01-01",3)), valid_end_date = as.Date(rep("2099-12-31",3)) ) mockDrugExposure(drug_exposure = drug_exposure, drug_strength = drug_strength , concept_relationship = concept_relationship, patient_size = 5) } test_that("checkDrugDose overall", { testData <- getInputDb() ingredient = 1125315 minCellCount = 0 result <- checkDrugDose(testData, ingredientConceptId = ingredient, minCellCount = minCellCount) expect_equal(nrow(result), 48) expect_equal(ncol(result), 16) expect_equal(colnames(result), c( "result_id","cdm_name","group_name","group_level","strata_name","strata_level", "variable_name","variable_level","estimate_name","estimate_type","estimate_value","additional_name", "additional_level","pattern_name","ingredient","ingredient_concept_id" )) expect_true(result$group_level[1] == "acetaminophen") expect_equal(result %>% dplyr::filter(.data$estimate_name == "count" & .data$strata_level == "overall") %>% dplyr::pull(estimate_value), "7") expect_equal(round(as.numeric(result %>% dplyr::filter(.data$estimate_name == "median" & .data$strata_level == "overall") %>% dplyr::pull(estimate_value),0)), 882) expect_true(!is.na(result %>% dplyr::filter(.data$estimate_name == "min" & .data$strata_level == "overall") %>% dplyr::pull(estimate_value))) expect_equal(result %>% dplyr::filter(.data$strata_level %in% c("milligram")) %>% dplyr::pull(strata_level), result %>% dplyr::filter(.data$strata_level %in% c("milligram")) %>% dplyr::pull(pattern_name)) DBI::dbDisconnect(attr(testData, "dbcon"), shutdown = TRUE) })