# Double Machine Learning for Partially Linear Instrumental Variable Regression. dml_pliv = function(data, y, d, z, n_folds, ml_l, ml_m, ml_r, ml_g, params, dml_procedure, score, n_rep = 1, smpls = NULL, params_l = NULL, params_m = NULL, params_r = NULL, params_g = NULL) { if (is.null(smpls)) { smpls = lapply(1:n_rep, function(x) sample_splitting(n_folds, data)) } all_thetas = all_ses = rep(NA_real_, n_rep) all_preds = list() for (i_rep in 1:n_rep) { this_smpl = smpls[[i_rep]] train_ids = this_smpl$train_ids test_ids = this_smpl$test_ids fit_g = (score == "IV-type") | is.function(score) all_preds[[i_rep]] = fit_nuisance_pliv( data, y, d, z, ml_l, ml_m, ml_r, ml_g, n_folds, this_smpl, fit_g, params_l, params_m, params_r, params_g) residuals = compute_pliv_residuals( data, y, d, z, n_folds, this_smpl, all_preds[[i_rep]]) y_minus_l_hat = residuals$y_minus_l_hat z_minus_m_hat = residuals$z_minus_m_hat d_minus_r_hat = residuals$d_minus_r_hat y_minus_g_hat = residuals$y_minus_g_hat D = data[, d] # DML 1 if (dml_procedure == "dml1") { thetas = vars = rep(NA_real_, n_folds) for (i in 1:n_folds) { test_index = test_ids[[i]] orth_est = orth_pliv_dml( y_minus_l_hat = y_minus_l_hat[test_index], z_minus_m_hat = z_minus_m_hat[test_index], d_minus_r_hat = d_minus_r_hat[test_index], y_minus_g_hat = y_minus_g_hat[test_index], D = D[test_index], score = score) thetas[i] = orth_est$theta } all_thetas[i_rep] = mean(thetas, na.rm = TRUE) if (length(train_ids) == 1) { y_minus_l_hat = y_minus_l_hat[test_index] z_minus_m_hat = z_minus_m_hat[test_index] d_minus_r_hat = d_minus_r_hat[test_index] y_minus_g_hat = y_minus_g_hat[test_index] } } if (dml_procedure == "dml2") { orth_est = orth_pliv_dml( y_minus_l_hat = y_minus_l_hat, z_minus_m_hat = z_minus_m_hat, d_minus_r_hat = d_minus_r_hat, y_minus_g_hat = y_minus_g_hat, D = D, score = score) all_thetas[i_rep] = orth_est$theta } all_ses[i_rep] = sqrt(var_pliv( D = D, theta = all_thetas[i_rep], y_minus_l_hat = y_minus_l_hat, z_minus_m_hat = z_minus_m_hat, d_minus_r_hat = d_minus_r_hat, y_minus_g_hat = y_minus_g_hat, score = score)) } theta = stats::median(all_thetas) if (length(this_smpl$train_ids) > 1) { n = nrow(data) } else { n = length(this_smpl$test_ids[[1]]) } se = se_repeated(all_ses * sqrt(n), all_thetas, theta) / sqrt(n) t = theta / se pval = 2 * stats::pnorm(-abs(t)) names(theta) = names(se) = d res = list( coef = theta, se = se, t = t, pval = pval, thetas = all_thetas, ses = all_ses, all_preds = all_preds, smpls = smpls) return(res) } fit_nuisance_pliv = function(data, y, d, z, ml_l, ml_m, ml_r, ml_g, n_folds, smpls, fit_g, params_l, params_m, params_r, params_g) { train_ids = smpls$train_ids test_ids = smpls$test_ids # nuisance l: E[Y|X] l_indx = names(data) != d & names(data) != z data_l = data[, l_indx, drop = FALSE] task_l = mlr3::TaskRegr$new(id = paste0("nuis_l_", d), backend = data_l, target = y) resampling_l = mlr3::rsmp("custom") resampling_l$instantiate(task_l, train_ids, test_ids) if (!is.null(params_l)) { ml_l$param_set$values = params_l } r_l = mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) l_hat_list = lapply(r_l$predictions(), function(x) x$response) # nuisance m: E[Z|X] m_indx = names(data) != y & names(data) != d data_m = data[, m_indx, drop = FALSE] task_m = mlr3::TaskRegr$new(id = paste0("nuis_m_", z), backend = data_m, target = z) if (!is.null(params_m)) { ml_m$param_set$values = params_m } resampling_m = mlr3::rsmp("custom") resampling_m$instantiate(task_m, train_ids, test_ids) r_m = mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) m_hat_list = lapply(r_m$predictions(), function(x) x$response) # nuisance r: E[D|X] r_indx = names(data) != y & names(data) != z data_r = data[, r_indx, drop = FALSE] task_r = mlr3::TaskRegr$new(id = paste0("nuis_r_", d), backend = data_r, target = d) if (!is.null(params_r)) { ml_r$param_set$values = params_r } resampling_r = mlr3::rsmp("custom") resampling_r$instantiate(task_r, train_ids, test_ids) r_r = mlr3::resample(task_r, ml_r, resampling_r, store_models = TRUE) r_hat_list = lapply(r_r$predictions(), function(x) x$response) if (fit_g) { # nuisance g residuals = compute_pliv_residuals( data, y, d, z, n_folds, smpls, list( l_hat_list = l_hat_list, m_hat_list = m_hat_list, r_hat_list = r_hat_list, g_hat_list = NULL)) y_minus_l_hat = residuals$y_minus_l_hat z_minus_m_hat = residuals$z_minus_m_hat d_minus_r_hat = residuals$d_minus_r_hat psi_a = -d_minus_r_hat * z_minus_m_hat psi_b = z_minus_m_hat * y_minus_l_hat theta_initial = -mean(psi_b, na.rm = TRUE) / mean(psi_a, na.rm = TRUE) D = data[, d] Y = data[, y] g_indx = names(data) != y & names(data) != d & names(data) != z y_minus_theta_d = Y - theta_initial * D data_g = cbind(data[, g_indx, drop = FALSE], y_minus_theta_d) task_g = mlr3::TaskRegr$new( id = paste0("nuis_g_", d), backend = data_g, target = "y_minus_theta_d") resampling_g = mlr3::rsmp("custom") resampling_g$instantiate(task_g, train_ids, test_ids) if (!is.null(params_g)) { ml_g$param_set$values = params_g } r_g = mlr3::resample(task_g, ml_g, resampling_g, store_models = TRUE) g_hat_list = lapply(r_g$predictions(), function(x) x$response) } else { g_hat_list = NULL } all_preds = list( l_hat_list = l_hat_list, m_hat_list = m_hat_list, r_hat_list = r_hat_list, g_hat_list = g_hat_list) return(all_preds) } compute_pliv_residuals = function(data, y, d, z, n_folds, smpls, all_preds) { test_ids = smpls$test_ids l_hat_list = all_preds$l_hat_list m_hat_list = all_preds$m_hat_list r_hat_list = all_preds$r_hat_list g_hat_list = all_preds$g_hat_list n = nrow(data) D = data[, d] Y = data[, y] Z = data[, z] y_minus_l_hat = z_minus_m_hat = d_minus_r_hat = y_minus_g_hat = rep(NA_real_, n) for (i in 1:n_folds) { test_index = test_ids[[i]] l_hat = l_hat_list[[i]] m_hat = m_hat_list[[i]] r_hat = r_hat_list[[i]] y_minus_l_hat[test_index] = Y[test_index] - l_hat z_minus_m_hat[test_index] = Z[test_index] - m_hat d_minus_r_hat[test_index] = D[test_index] - r_hat if (!is.null(g_hat_list)) { g_hat = g_hat_list[[i]] y_minus_g_hat[test_index] = Y[test_index] - g_hat } } residuals = list( y_minus_l_hat = y_minus_l_hat, z_minus_m_hat = z_minus_m_hat, d_minus_r_hat = d_minus_r_hat, y_minus_g_hat = y_minus_g_hat) return(residuals) } # Orthogonalized Estimation of Coefficient in PLR orth_pliv_dml = function(y_minus_l_hat, z_minus_m_hat, d_minus_r_hat, y_minus_g_hat, D, score) { if (score == "partialling out") { theta = mean(y_minus_l_hat * z_minus_m_hat) / mean(d_minus_r_hat * z_minus_m_hat) } else if (score == "IV-type") { theta = mean(y_minus_g_hat * z_minus_m_hat) / mean(D * z_minus_m_hat) } else { stop("Inference framework for orthogonal estimation unknown") } res = list(theta = theta) return(res) } # Variance estimation for DML estimator in the partially linear regression model var_pliv = function(theta, D, y_minus_l_hat, z_minus_m_hat, d_minus_r_hat, y_minus_g_hat, score) { if (score == "partialling out") { var = mean(1 / length(y_minus_l_hat) * 1 / (mean(d_minus_r_hat * z_minus_m_hat))^2 * mean(((y_minus_l_hat - d_minus_r_hat * theta) * z_minus_m_hat)^2)) } else if (score == "IV-type") { var = mean(1 / length(y_minus_l_hat) * 1 / (mean(D * z_minus_m_hat))^2 * mean(((y_minus_g_hat - D * theta) * z_minus_m_hat)^2)) } else { stop("Inference framework for variance estimation unknown") } return(c(var)) } # Bootstrap Implementation for Partially Linear Regression Model bootstrap_pliv = function(theta, se, data, y, d, z, n_folds, smpls, all_preds, bootstrap, n_rep_boot, score, n_rep = 1) { for (i_rep in 1:n_rep) { residuals = compute_pliv_residuals( data, y, d, z, n_folds, smpls[[i_rep]], all_preds[[i_rep]]) y_minus_l_hat = residuals$y_minus_l_hat d_minus_r_hat = residuals$d_minus_r_hat z_minus_m_hat = residuals$z_minus_m_hat y_minus_g_hat = residuals$y_minus_g_hat if (score == "partialling out") { psi = (y_minus_l_hat - d_minus_r_hat * theta[i_rep]) * z_minus_m_hat psi_a = -d_minus_r_hat * z_minus_m_hat } else if (score == "IV-type") { D = data[, d] psi = (y_minus_g_hat - D * theta[i_rep]) * z_minus_m_hat psi_a = -D * z_minus_m_hat } n = length(psi) weights = draw_bootstrap_weights(bootstrap, n_rep_boot, n) this_res = functional_bootstrap( theta[i_rep], se[i_rep], psi, psi_a, n_folds, smpls[[i_rep]], n_rep_boot, weights) if (i_rep == 1) { boot_res = this_res } else { boot_res$boot_coef = cbind(boot_res$boot_coef, this_res$boot_coef) boot_res$boot_t_stat = cbind(boot_res$boot_t_stat, this_res$boot_t_stat) } } return(boot_res) }