R Under development (unstable) (2024-08-21 r87038 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > require("DoseFinding") Loading required package: DoseFinding > ######################################################################## > #### multContTest > # functions to sample random DF data > getDosSampSiz <- function(){ + # generate dose levels + mD <- runif(1, 0, 1500) + nD <- max(rpois(1, 5), 4) + p <- rgamma(nD, 3) + p <- cumsum(p/sum(p)) + doses <- signif(c(0, mD*p), 3) + # sample size allocations + totSS <- rpois(1, rexp(1, 1/250)) + totSS <- max(totSS, 50) + p <- rgamma(nD+1, 3);p <- p/sum(p) + n <- round(p*totSS) + n[n==0] <- rpois(sum(n==0), 1)+1 + list(doses=doses, n=n) + } > getDFdataSet <- function(doses, n){ + ll <- getDosSampSiz() + e0 <- rnorm(1, 0, 10) + eMax <- rgamma(1, abs(e0)*0.5, 0.5)*I(runif(1)<0.25) + if(eMax > 0){ sig <- eMax/runif(1, 0.5, 5)} + else { sig <- rgamma(1, abs(e0)*0.5, 0.5) } + dosVec <- rep(ll$doses, ll$n) + if(runif(1)<0.3){ + mnVec <- betaMod(dosVec, e0=e0, eMax=eMax, delta1=runif(1, 0.5, 5), + delta2=runif(1, 0.5, 5), scal=1.2*max(ll$doses)) + } else { + mnVec <- logistic(dosVec, e0 = e0, eMax = eMax, + ed50=runif(1, 0.05*max(ll$doses), 1.5*max(ll$doses)), + delta=runif(1, 0.5, max(ll$doses)/2)) + } + resp <- rnorm(sum(ll$n), mnVec, sig) + N <- sum(ll$n) + cov1 <- as.factor(rpois(N, 5)) + cov2 <- runif(N, 1, 100) + aa <- data.frame(x= dosVec, y=resp, cov1=cov1, cov2=cov2) + aa[sample(1:nrow(aa)),] + } > > #### simulate data > set.seed(10) > dd <- getDFdataSet() > bet <- guesst(0.9*max(dd$x), p=0.8, "betaMod", scal = 1.2*max(dd$x), + dMax = 0.7*max(dd$x), Maxd = max(dd$x)) > sE <- guesst(c(0.5*max(dd$x), 0.7*max(dd$x)) , p=c(0.5, 0.9), "sigEmax") > models <- Mods(linear = NULL, betaMod = bet, sigEmax = sE, + doses = sort(unique(dd$x)), + addArgs=list(scal = 1.2*max(dd$x))) > obj <- MCPMod(x,y, dd, models=models, addCovars = ~cov1+cov2, alpha=0.05, Delta=0.5) > plot(obj, plotData="meansCI", CI=TRUE) > obj <- MCPMod(dd$x,dd$y, models=models, alpha=0.05, Delta=0.5) > plot(obj, plotData="meansCI", CI=TRUE) > > #### different model set > set.seed(10) > dd <- getDFdataSet() > mD <- max(dd$x) > lg1 <- guesst(c(0.3*mD, 0.4*mD), c(0.3, 0.9), "logistic") > lg2 <- guesst(c(0.3*mD, 0.4*mD), c(0.3, 0.5), "logistic") > expo <- guesst(c(0.9*mD), c(0.7), "exponential", Maxd=mD) > quad <- guesst(c(0.6*mD), c(1), "quadratic") > models <- Mods(linlog = NULL, logistic = rbind(lg1, lg2), + exponential = expo, quadratic = quad, + doses = sort(unique(dd$x)), addArgs=list(off = 0.2*max(dd$x))) > > obj <- MCPMod(x,y, dd, models=models, addCovars = ~cov1+cov2, alpha = 0.2, Delta=0.5) > plot(obj, plotData="meansCI", CI=TRUE) > obj <- MCPMod(dd$x,dd$y, models=models, addCovars = ~1, alpha = 0.2, Delta=0.5) > plot(obj, plotData="meansCI", CI=TRUE) > > ######################################################################## > #### some binary test cases > getDFdataSet.bin <- function(doses, n){ + ll <- getDosSampSiz() + ll$n <- ll$n+10 + e0 <- rnorm(1, 0, sqrt(3.28)) + eMax <- rnorm(1, 0, 5) + dosVec <- rep(ll$doses, ll$n) + if(runif(1)<0.3){ + mn <- betaMod(dosVec, e0 = e0, eMax = eMax, delta1=runif(1, 0.5, 5), + delta2=runif(1, 0.5, 5), scal=1.2*max(ll$doses)) + } else { + mn <- logistic(dosVec, e0 = e0, + eMax = eMax, ed50=runif(1, 0.05*max(ll$doses), 1.5*max(ll$doses)), + delta=runif(1, 0.5, max(ll$doses)/2)) + } + resp <- rbinom(length(ll$n), ll$n, 1/(1+exp(-mn))) + aa <- data.frame(dose = ll$doses, resp = resp) + aa <- data.frame(x= aa$dose, y=aa$resp/ll$n, n=ll$n) + aa[sample(1:nrow(aa)),] + } > > set.seed(1909) > dd <- getDFdataSet.bin() > bet <- guesst(0.9*max(dd$x), p=0.8, "betaMod", scal = 1.2*max(dd$x), dMax = 0.7*max(dd$x), + Maxd = max(dd$x)) > sE <- guesst(c(0.5*max(dd$x), 0.7*max(dd$x)) , p=c(0.5, 0.9), "sigEmax") > models <- Mods(linear = NULL, betaMod = bet, sigEmax = sE, + doses = sort(unique(dd$x)), addArgs=list(scal = 1.2*max(dd$x))) > logReg <- glm(y~as.factor(x)-1, family=binomial, data=dd, weights = n) > dePar <- coef(logReg) > vCov <- vcov(logReg) > dose <- sort(unique(dd$x)) > obj <- MCPMod(dose, dePar, S=vCov, models=models, type="general", + df=Inf, alpha = 0.3, Delta = 0.5) > plot(obj, plotData="meansCI", CI=TRUE) > > set.seed(1997) > dd <- getDFdataSet.bin() > bet <- guesst(0.9*max(dd$x), p=0.8, "betaMod", scal = 1.2*max(dd$x), + dMax = 0.7*max(dd$x), Maxd = max(dd$x)) > sE <- guesst(c(0.5*max(dd$x), 0.7*max(dd$x)) , p=c(0.5, 0.9), "sigEmax") > models <- Mods(linear = NULL, betaMod = bet, sigEmax = sE,direction = "decreasing", + addArgs=list(scal = 1.2*max(dd$x)), doses = sort(unique(dd$x))) > logReg <- glm(y~as.factor(x)-1, family=binomial, data=dd, weights = n) > dePar <- coef(logReg) > vCov <- vcov(logReg) > dose <- sort(unique(dd$x)) > obj <- MCPMod(dose, dePar, S=vCov, models=models, type = "general", + pVal = TRUE, df=Inf, alpha = 0.2, Delta = 0.5) > plot(obj, plotData="meansCI", CI=TRUE) > > set.seed(1) > dd <- getDFdataSet.bin() > bet <- guesst(0.9*max(dd$x), p=0.8, "betaMod", scal = 1.2*max(dd$x), + dMax = 0.7*max(dd$x), Maxd = max(dd$x)) > sE <- guesst(c(0.5*max(dd$x), 0.7*max(dd$x)) , p=c(0.5, 0.9), "sigEmax") > models <- Mods(linear = NULL, betaMod = bet, sigEmax = sE, + doses = sort(unique(dd$x)), addArgs=list(scal = 1.2*max(dd$x))) > logReg <- glm(y~as.factor(x)-1, family=binomial, data=dd, weights = n) > dePar <- coef(logReg) > vCov <- vcov(logReg) > dose <- sort(unique(dd$x)) > obj <- MCPMod(dose, dePar, S=vCov, models=models, type = "general", + pVal = T, df=Inf, alpha = 0.4, Delta = 0.5) > plot(obj, plotData="meansCI", CI=TRUE) > > ######################################################################## > ## placebo-adjusted scale > ## two blocks below should give equal results > data(IBScovars) > modlist <- Mods(emax = 0.05, linear = NULL, + linInt = c(0, 1, 1, 1), doses = c(0, 1, 2, 3, 4)) > ancMod <- lm(resp~factor(dose)+gender, data=IBScovars) > drEst <- coef(ancMod)[2:5] > vc <- vcov(ancMod)[2:5, 2:5] > doses <- (1:4) > obj <- MCPMod(doses, drEst, S = vc, models = modlist, placAdj = TRUE, + type = "general", df = Inf, Delta=0.5) > plot(obj, plotData="meansCI", CI=TRUE) > > ## now unordered > ord <- c(3,4,1,2) > drEst2 <- drEst[ord] > vc2 <- vc[ord,ord] > doses2 <- doses[ord] > obj <- MCPMod(doses2, drEst2, S = vc2, models = modlist, placAdj = TRUE, + type = "general", df = Inf, Delta = 0.5) > plot(obj, plotData="meansCI", CI=TRUE) > > ## unadjusted scale > ## two blocks below should give equal results > ancMod <- lm(resp~factor(dose)-1, data=IBScovars) > drEst <- coef(ancMod) > vc <- vcov(ancMod) > doses <- 0:4 > obj <- MCPMod(doses, drEst, S = vc, models = modlist, + type = "general", df = Inf, Delta = 0.5) > plot(obj, plotData="meansCI", CI=TRUE) > > ord <- c(3,4,1,2,5) > drEst2 <- drEst[ord] > vc2 <- vc[ord,ord] > doses2 <- doses[ord] > obj <- MCPMod(doses2, drEst2, S = vc2, models = modlist, + type = "general", df = Inf, Delta = 0.5) > plot(obj, plotData="meansCI", CI=TRUE) > > proc.time() user system elapsed 2.87 0.32 3.20