R Under development (unstable) (2023-06-26 r84605 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > require("DoseFinding") Loading required package: DoseFinding Loading required package: ggplot2 Loading required package: lattice Loading required package: mvtnorm > ## Some examples from the JASA paper (for validation) > ######################################################################## > # Emax model p.1228 l. 5 > fMod <- Mods(emax = 25, doses = c(0,150), placEff=0, maxEff=0.4) > fMod$emax[2] <- 0.6666667 > doses <- c(0, 18.75, 150) > probs <- 1 > deswgts1 <- optDesign(fMod, probs, doses, Delta=0.2, designCrit = "TD", + optimizer="Nelder-Mead") > deswgts2 <- optDesign(fMod, probs, doses, Delta=0.2, designCrit = "TD", + optimizer="nlminb") > ## efficiency compared to standard design (last column) > crt <- calcCrit(rep(1/6, 6), fMod, probs, c(0, 10, 25, 50, 100, 150), + Delta=0.2, designCrit = "TD") > exp(deswgts1$crit - crt) [1] 0.5099184 > > # Paper p. 1228 l. 2 > fMod <- Mods(emax = 25, doses = c(0,150), placEff=0, maxEff=0.4) > doses <- c(0, 18.75, 150) > probs <- 1 > deswgts <- optDesign(fMod, probs, doses, Delta=0.2, designCrit = "TD") > deswgts Calculated TD - optimal design: 0 18.75 0.49998 0.50002 > > ######################################################################## > #### exponential > # Paper p.1229 2nd line > fMod <- Mods(exponential=85, doses = c(0, 150), placEff=0, maxEff=0.4) > doses <- c(0, 50, 104.52, 150) > probs <- 1 > deswgts <- optDesign(fMod, probs, doses, Delta=0.2, designCrit = "TD", + optimizer="Nelder-Mead") > deswgts Calculated TD - optimal design: 0 104.52 0.49993 0.50006 > ## efficiency compared to standard design (last column) > crt <- calcCrit(rep(1/6, 6), fMod, probs, c(0, 10, 25, 50, 100, 150), + Delta=0.2, designCrit = "TD") > exp(deswgts$crit - crt) [1] 0.4286171 > > # Paper p.1229 1st line > fMod <- Mods(exponential=65, doses=c(0, 150), placEff=0, maxEff=0.4) > fMod$exponential[2] <- 0.08264711 > doses <- c(0, 101.57, 150) > probs <- 1 > deswgts <- optDesign(fMod, probs, doses, Delta=0.2, designCrit = "TD") > deswgts Calculated TD - optimal design: 0 101.57 150 0.43958 0.50000 0.06041 > > ######################################################################## > #### Logistic > #### Paper: p.1230 7th line > fMod <- Mods(logistic=c(50, 10.881), doses = c(0, 150), placEff=0, maxEff=0.4) > doses <- c(0, 37.29, 64.44, 150) > probs <- 1 > deswgts <- optDesign(fMod, probs, doses, Delta=0.05, designCrit = "TD") > deswgts Calculated TD - optimal design: 0 37.29 64.44 150 0.40070 0.45303 0.09933 0.04694 > ## efficiency compared to standard design (last column) > crt <- calcCrit(rep(1/6, 6), fMod, probs, c(0, 10, 25, 50, 100, 150), + Delta=0.05, designCrit = "TD") > exp(deswgts$crit - crt) [1] 0.1853293 > > > #### Paper p.1230 line 1 > fMod <- Mods(logistic=c(50, 10.881), doses = c(0, 150), placEff=0, maxEff=0.4) > doses <- c(0, 50.22) > probs <- 1 > deswgts <- optDesign(fMod, probs, doses, Delta=0.2, designCrit = "TD") > deswgts Calculated TD - optimal design: 0 50.22 0.5 0.5 > > ######################################################################## > #### beta > # Paper p.1230 line 5 > fMod <- Mods(betaMod = c(0.33, 2.31), doses = c(0,150), addArgs=list(scal=200), + placEff=0, maxEff=0.4) > doses <- c(0, 0.49, 25.2, 108.07, 150) > probs <- 1 > deswgts <- optDesign(fMod, probs, doses, Delta=0.1, + control=list(maxit=1000), designCrit = "TD") > deswgts Calculated TD - optimal design: 0 0.49 25.2 108.07 0.44787 0.47652 0.05213 0.02348 > ## efficiency compared to standard design (last column) > crt <- calcCrit(rep(1/6, 6), fMod, probs, c(0, 10, 25, 50, 100, 150), + Delta=0.1, designCrit = "TD") > exp(deswgts$crit - crt) [1] 0.130092 > > # Paper p. 1230 line 10 > fMod <- Mods(betaMod = c(1.39, 1.39), doses=c(0, 150), addArgs=list(scal=200), + placEff=0, maxEff=0.4) > #doses <- c(0, 10, 25, 50, 100, 150) > doses <- c(0, 27, 94.89, 150) > probs <- 1 > deswgts <- optDesign(fMod, probs, doses, Delta=0.1, designCrit = "TD") > deswgts Calculated TD - optimal design: 0 27 94.89 150 0.44879 0.47519 0.05121 0.02481 > ## efficiency compared to standard design (last column) > crt <- calcCrit(rep(1/6, 6), fMod, probs, c(0, 10, 25, 50, 100, 150), + Delta=0.1, designCrit = "TD") > exp(deswgts$crit - crt) [1] 0.5013672 > > # Paper p. 1230 line 1 > fMod <- Mods(betaMod = c(0.23, 2.31), doses=c(0,150), addArgs=list(scal=200), + placEff=0, maxEff=0.4) > doses <- c(0, 0.35, 150) > probs <- 1 > deswgts <- optDesign(fMod, probs, doses, Delta=0.2, designCrit = "TD") > deswgts Calculated TD - optimal design: 0 0.35 150 0.49865 0.50000 0.00135 > ## efficiency compared to standard design (last column) > crt <- calcCrit(rep(1/6, 6), fMod, probs, c(0, 10, 25, 50, 100, 150), + Delta=0.2, designCrit = "TD") > exp(deswgts$crit - crt) [1] 0.05572985 > > ######################################################################## > #### mixed Paper p. 1233, l. 2 (note the off and probably also the > #### scal parameter were treated as unknown in this example in the paper, > #### hence the results need not be consistent with paper) > doses <- c(0, 9.9, 49.5, 115.4, 150) > fMod <- Mods(linear = NULL, emax = 25, exponential = 85, + linlog = NULL, logistic = c(50, 10.8811), + doses=doses, addArgs=list(off=1), + placEff=0, maxEff=0.4) > probs <- rep(1/5, 5) > deswgts <- optDesign(fMod, probs, doses, Delta=0.2, designCrit = "TD") > deswgts2 <- optDesign(fMod, probs, doses, Delta=0.2, optimizer = "nlminb", + designCrit = "TD") > > # Some other examples > ######################################################################## > doses <- c(0, 62.5, 125, 250, 500) > fMod <- Mods(emax = c(25, 107.14), linear = NULL, + logistic = c(150, 45.51), betaMod = c(1,1), + doses = doses, addArgs=list(scal=1.2*500), + placEff=60, maxEff=280) > probs <- rep(0.2, length=5) > deswgts <- optDesign(fMod, probs, Delta=200, designCrit = "TD") > > ######################################################################## > #### using already allocated patients > fMod <- Mods(betaMod = c(0.33, 2.31), doses = c(0,150), addArgs=list(scal=200), + placEff=0, maxEff=0.4) > doses <- c(0, 0.49, 25.2, 108.07, 150) > probs <- 1 > # no previously allocated patients > deswgts <- optDesign(fMod, probs, doses=doses, Delta=0.1, + control=list(maxit=1000), designCrit = "TD") > > # now use previously allocated patients > nold <- c(45, 50, 0, 0, 0) > deswgts2 <- optDesign(fMod, probs, doses=doses, Delta=0.1, n=30, + control=list(maxit=1000), nold=nold, designCrit = "TD") > # the overall design > (30*deswgts2$design+nold)/(30+sum(nold)) [1] 4.478701e-01 4.765233e-01 5.212994e-02 2.347673e-02 6.509031e-09 > deswgts$design [1] 4.478701e-01 4.765233e-01 5.212991e-02 2.347669e-02 5.680430e-09 > > ######################################################################## > #### Dopt Examples > doses <- c(0, 62.5, 125, 250, 500) > fMod <- Mods(emax = c(25, 107.14), logistic = c(150, 45.51), + linear = NULL, betaMod = c(1,1), + doses=doses, addArgs=list(scal=500*1.2), + placEff=60, maxEff=280) > probs <- rep(0.2, 5) > des1 <- optDesign(fMod, probs, doses, Delta = 200, scal = 500*1.2, designCrit = "TD") > des2 <- optDesign(fMod, probs, doses, Delta = 200, scal = 500*1.2, designCrit = "Dopt") > des3 <- optDesign(fMod, probs, doses, Delta = 200, scal = 500*1.2, designCrit = "Dopt&TD") > > ######################################################################## > #### optimizer = "exact" and "solnp" > doses <- c(0, 62.5, 125, 250, 500) > fMod <- Mods(emax = c(25, 107.14), logistic = c(150, 45.51), + linear = NULL, betaMod = c(1,1), + doses=doses, addArgs=list(scal=500*1.2), + placEff=60, maxEff=280) > probs <- rep(0.2, 5) > des41 <- optDesign(fMod, probs, doses=doses, Delta = 200, n = 10, + optimizer = "exact", lowbnd = c(0.3,0,0,0,0), designCrit = "TD") > des42 <- optDesign(fMod, probs, doses=doses, Delta = 200, + optimizer = "solnp", designCrit = "TD", + lowbnd = c(0.1,0,0,0,0)) > des51 <- optDesign(fMod, probs, doses=doses, Delta = 200, n = 10, + designCrit = "Dopt", optimizer = "exact", + uppbnd = rep(0.5,5)) > des52 <- optDesign(fMod, probs, doses=doses, Delta = 200, + designCrit = "Dopt", optimizer = "solnp", + uppbnd = rep(0.5,5)) > des61 <- optDesign(fMod, probs, doses=doses, Delta = 200, n = 10, + optimizer = "exact", designCrit = "Dopt&TD") > des62 <- optDesign(fMod, probs, doses=doses, Delta = 200, + optimizer = "solnp", designCrit = "Dopt&TD") > > ######################################################################## > #### Example from Padmanabhan and Dragalin, Biometrical Journal 52 (2010) > #### p. 836-852 > fm <- Mods(sigEmax = c(4, 5), doses = 0:8, + placEff=0, maxEff=-1.65) > fm$sigEmax <- c(0, -1.70, 4, 5) > ## compare to Figure 1, p. 841 > desSED <- optDesign(fm, 1, designCrit="Dopt", optimizer = "solnp") > desSEM <- optDesign(fm, 1, Delta = 1.3, designCrit = "TD", + optimizer = "solnp") > > ## designs underlying Table 2, p. 843 (from an e-mail of Vlad) > ## I cannot reproduce the displayed efficiencies exactly > ## (most probably due to numerical round-off) > ##LDoD > ## [1,] 0.246 0.141 0.123 0.000 0.000 0.240 0 0 0.250 > ## [2,] 0.248 0.233 0.061 0.210 0.000 0.000 0 0 0.248 > ## [3,] 0.246 0.000 0.000 0.223 0.081 0.204 0 0 0.246 > ## [4,] 0.250 0.247 0.045 0.210 0.000 0.000 0 0 0.248 > ## [6,] 0.250 0.249 0.192 0.062 0.000 0.000 0 0 0.246 > ## MEDoD > ## [1,] 0.49 0.01 0.00 0.00 0.00 0.00 0.36 0.14 0 > ## [2,] 0.49 0.02 0.00 0.15 0.35 0.00 0.00 0.00 0 > ## [3,] 0.23 0.26 0.01 0.00 0.00 0.46 0.04 0.00 0 > ## [4,] 0.50 0.00 0.49 0.01 0.00 0.00 0.00 0.00 0 > ## [6,] 0.49 0.01 0.47 0.02 0.00 0.00 0.00 0.00 0 > doses <- 0:8 > fm <- list() > fm[[1]] <- Mods(sigEmax = c(23.07, 1.18), doses=doses, placEff=0, maxEff=-1.65);fm[[1]]$sigEmax <- c(0, -7.29, 23.07, 1.18) > fm[[2]] <- Mods(sigEmax = c(2, 2.22), doses=doses, placEff=0, maxEff=-1.65);fm[[2]]$sigEmax <- c(-0.08, -1.71, 2, 2.22) > fm[[3]] <- Mods(sigEmax = c(4, 5), doses=doses, placEff=0, maxEff=-1.65);fm[[3]]$sigEmax <- c(0, -1.70, 4, 5) > fm[[4]] <- Mods(sigEmax = c(0.79, 1), doses=doses, placEff=0, maxEff=-1.65);fm[[4]]$sigEmax <- c(0, -1.81, 0.79, 1.00) > fm[[5]] <- Mods(sigEmax = c(0.74, 1.18), doses=doses, placEff=0, maxEff=-1.65);fm[[5]]$sigEmax <- c(-0.03, -1.72, 0.74, 1.18) > > desD <- desM <- matrix(ncol = 9, nrow = 5) > for(i in 1:5){ + cc1 <- optDesign(fm[[i]], 1, doses=doses, designCrit = "TD", optimizer = "solnp", + Delta = 1.3) + cc2 <- optDesign(fm[[i]], 1, doses=doses, designCrit="Dopt", optimizer = "solnp") + desM[i,] <- cc1$design + desD[i,] <- cc2$design + } > round(desD, 3) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 0.246 0.142 0.122 0.000 0.000 0.241 0 0 0.249 [2,] 0.248 0.234 0.059 0.211 0.000 0.000 0 0 0.248 [3,] 0.247 0.000 0.000 0.224 0.081 0.203 0 0 0.246 [4,] 0.250 0.248 0.044 0.210 0.000 0.000 0 0 0.249 [5,] 0.250 0.248 0.191 0.064 0.000 0.000 0 0 0.247 > round(desM, 2) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 0.49 0.01 0.00 0.00 0.00 0.00 0.36 0.14 0.00 [2,] 0.48 0.02 0.00 0.32 0.18 0.00 0.00 0.00 0.00 [3,] 0.21 0.29 0.00 0.00 0.00 0.46 0.04 0.00 0.00 [4,] 0.50 0.00 0.49 0.01 0.00 0.00 0.00 0.00 0.00 [5,] 0.49 0.02 0.48 0.00 0.00 0.00 0.00 0.00 0.01 > > ## compare criterion for TD design under model 2 > crDrag <- calcCrit(c(0.49,0.02,0,0.15,0.34,0,0,0,0), models=fm[[2]], + probs=1, doses=doses, designCrit="TD", Delta=1.3) > crDF <- optDesign(fm[[i]], 1, doses=doses, designCrit = "TD", optimizer = "solnp", + Delta = 1.3)$crit > exp(crDF-crDrag) ## design calculated by P and Dragalin only has 88% efficacy? [1] 0.8823949 > > > ################################################################################ > #### look at standardized Dopt and Dopt&TD criteria > doses <- c(0, 62.5, 125, 250, 500) > fMod1 <- Mods(sigEmax = rbind(c(25, 5), c(107.14, 2)), doses=doses, placEff=60, maxEff=280) > fMod2 <- Mods(sigEmax = rbind(c(25, 5), c(107.14, 2)), linear = NULL, + doses=doses, placEff=60, maxEff=280) > w1 <- rep(0.5, 2) > w2 <- rep(1/3, 3) > ## des1 and des2 should be exactly the same > des1 <- optDesign(fMod1, w1, doses, designCrit = "Dopt", standDopt = FALSE) > des2 <- optDesign(fMod1, w1, doses, designCrit = "Dopt", standDopt = TRUE) > > ## des1 and des2 should be different (as linear and emax have > ## different number of parameters) > des1 <- optDesign(fMod2, w2, doses, designCrit = "Dopt", standDopt = FALSE, + optimizer = "solnp") > des2 <- optDesign(fMod2, w2, doses, designCrit = "Dopt", standDopt = TRUE, + optimizer = "solnp") > > ## same with Dopt&TD criterion > ## des1 and des2 will differ (due to different scaling > ## of Dopt and TD criteria) > des1 <- optDesign(fMod1, w1, doses, designCrit = "Dopt&TD", + Delta = 100, standDopt = FALSE, + optimizer = "solnp") > des2 <- optDesign(fMod1, w1, doses, designCrit = "Dopt&TD", + Delta = 100, standDopt = TRUE, + optimizer = "solnp") > > > ######################################################################## > #### optimial design logistic regression > ## compare this to Atkinson et al. (2007), p. 400 > ## theoretically the D-opt design should have weights 0.5,0.5 at points where > ## the probability is 0.176 and 1-0.176 (0.3456 and 0.6544 in this case) > doses <- seq(0, 1, length = 21) > fMod <- Mods(linear = NULL, doses=doses, placEff=-5, maxEff = 10) > pp <- 1 # just one model > ## by default calculates TD optimal design > mu <- as.numeric(getResp(fMod, doses=doses)) > mu <- 1/(1+exp(-mu)) > weights <- mu*(1-mu) > des1 <- optDesign(fMod, pp, doses, weights = weights, optimizer = "solnp") > des2 <- optDesign(fMod, pp, doses, designCrit = "TD", Delta=0.2, + optimizer = "solnp", weights = weights) > des3 <- optDesign(fMod, pp, doses, Delta=0.2, designCrit = "Dopt&TD", + optimizer = "solnp", weights = weights) > > ######################################################################## > #### code using lower and upper bound (previous to version 0.9-6 this > #### caused problems as the starting value for solnp rep(0.2, 5) was > #### on the boundary, now a feasible starting values is used > doses <- seq(0, 1, length=5) > nold <- rep(0, times=5) > lowbnd <- c(0.2,0.0,0.0,0.0,0.2) > uppbnd <- c(1.0,0.3,1.0,1.0,1.0) > trueModels <- Mods(linear=NULL, doses=doses, placEff = 0, maxEff = 1) > optDesign(models=trueModels, probs=1, doses=doses, designCrit="Dopt", + lowbnd=lowbnd,uppbnd=uppbnd) Calculated D - optimal design: 0 1 0.5 0.5 > > ######################################################################## > ## TD optimal design for beta model (previously instabilities for > ## numerical gradients) > mm <- Mods(betaMod=c(1.5,0.8), doses=seq(0,1,by=0.25), placEff=0, maxEff=1) > optDesign(mm, probs=1, designCrit="TD", Delta=0.5) Calculated TD - optimal design: 0 0.25 0.5 1 0.48951 0.35517 0.14483 0.01049 > ## Output from GUI > ## placEff=0, maxEff=1 > ## TD-optimalität mit Delta= 0.5 > ## Model: BetaMod mit delta1=1.5, delta2=0.8 > ## Dosen 0 0.25 0.5 0.75 1 > ## Design 0.4895 0.3552 0.1448 0 0.0105 > > proc.time() user system elapsed 1.71 0.04 1.76