# point transect exercise # simulated data data(PTExercise) convert_units <- 0.01 context("PTexercise") test_that("hn", { # Effort : 30.00000 # # samples : 30 # Width : 20.00000 # # observations: 131 # # Model # Half-normal key, k(y) = Exp(-y**2/(2*A(1)**2)) # # # Point Standard Percent Coef. 95% Percent # Parameter Estimate Error of Variation Confidence Interval # --------- ----------- ----------- -------------- ---------------------- # D 70.822 11.134 15.72 51.976 96.502 # --------- ----------- ----------- -------------- ---------------------- # # Measurement Units # --------------------------------- # Density: Numbers/hectares # EDR: meters # # Component Percentages of Var(D) # ------------------------------- # Detection probability : 59.3 # Encounter rate : 40.7 # # half-normal model #PTExercise$size <- 1 # df_hn <- ds(PTExercise, transect="point", key="hn", adjustment=NULL, # truncation=20, convert.units=convert.units) # df_hn <- dht2(df_hn, flatfile=PTExercise, strat_formula=~1) # expect_equal(attr(df_hn,"density")$Density, 70.822, tol=1e-1) # expect_equal(attr(df_hn,"density")$LCI, 51.976, tol=1e-2) # expect_equal(attr(df_hn,"density")$UCI, 96.502, tol=1e-2) # expect_equal(attr(df_hn,"density")$Density_se, 11.134, tol=1e-2) # expect_equal(attr(df_hn,"density")$Density_CV, .1572, tol=1e-2) }) # hazard test_that("hn", { df_hr <- ds(PTExercise, transect="point", key="hr", truncation=20, convert_units=convert_units, er_var="P3") # this gives answers per square metre df_hr$dht }) test_that("hn", { df_unif <- ds(PTExercise, transect="point", key="unif", truncation=20, convert_units=convert_units, order=1, er_var="P3") # this gives answers per square metre df_unif$dht })