# cluster tests context("cluster") test_that("cluster exercise works",{ #skip_on_cran() # import data data(ClusterExercise) ClusterExercise$Cluster.strat <- as.factor(ClusterExercise$Cluster.strat) # setup data # get rid of old region labels ClusterExercise$Area <- sum(unique(ClusterExercise$Area)) ClusterExercise$Region.Label <- "Total" # fit detection function # df <- ds(ClusterExercise, truncation=1.5, key="hr", # cutpoints=seq(0, 1.5, len=8), adjustment=NULL) # exactly as in Distance for Windows dat <- unflatten(ClusterExercise) dat <- dat$data[!is.na(dat$data$distance), ] dat <- dat[dat$distance<=1.5, ] dat <- Distance::create_bins(dat, seq(0, 1.5, len=8)) # fit the exact function fitted by Distance result <- ddf(dsmodel = ~mcds(key = "hr", formula = ~1), data = dat, method = "ds", meta.data = list(width = 1.5, binned=TRUE, breaks=seq(0, 1.5, len=8)), control=list(initial=list(scale=log(0.7067555), shape=log(2.484188)), nofit=TRUE)) df <- result strat_N <- dht2(df, flatfile=ClusterExercise, strat_formula=~Cluster.strat, stratification="object") # Estimate %CV df 95% Confidence Interval # ------------------------------------------------------ # Stratum: 1 # Hazard/Cosine # DS 0.11690E-01 26.38 36.13 0.69088E-02 0.19780E-01 # D 0.11690E-01 26.38 36.13 0.69088E-02 0.19780E-01 # N 8362.0 26.38 36.13 4942.0 14149. # Stratum: 2 # Hazard/Cosine # DS 0.98915E-02 32.15 31.43 0.52197E-02 0.18745E-01 # D 0.19783E-01 32.15 31.43 0.10439E-01 0.37490E-01 # N 14151. 32.15 31.43 7467.0 26817. # Stratum: 3 # Hazard/Cosine # DS 0.47959E-02 39.18 28.70 0.22132E-02 0.10392E-01 # D 0.27876E-01 41.25 34.46 0.12462E-01 0.62358E-01 # N 19940. 41.25 34.46 8914.0 44605. # Pooled Estimates: # Estimate %CV df 95% Confidence Interval # ------------------------------------------------------ # DS 0.26377E-01 20.41 117.85 0.17680E-01 0.39353E-01 # D 0.59349E-01 24.51 76.50 0.36685E-01 0.96015E-01 # N 42453. 24.51 76.50 26241. 68681. # # Estimate %CV df 95% Confidence Interval # ------------------------------------------------------ # Stratum: 1 # n 39.000 # k 25.000 # L 1842.8 # n/L 0.21164E-01 23.72 24.00 0.13057E-01 0.34302E-01 # # Stratum: 2 # n 33.000 # k 25.000 # L 1842.8 # n/L 0.17908E-01 30.01 24.00 0.97691E-02 0.32826E-01 # # Stratum: 3 # n 16.000 # k 25.000 # L 1842.8 # n/L 0.86825E-02 37.45 24.00 0.41109E-02 0.18338E-01 expect_equal(strat_N$Abundance, c(8362, 14151, 19940, 42453), tol=1e-2) expect_equal(strat_N$LCI, c(4942.0, 7467.0, 8914.0, 26241), tol=1e-2) expect_equal(strat_N$UCI, c(14149, 26817, 44605, 68681), tol=1e-2) expect_equal(strat_N$df, c(36.13, 31.43, 34.46, 76.50), tol=1e-1) expect_equal(strat_N$Abundance_CV, c(26.38, 32.15, 41.25, 24.51)/100, tol=1e-2) })