R Under development (unstable) (2024-07-24 r86924 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # library(DescTools) > # library(haven) #for read_dta > # library(MASS) #for polr > # library(nnet) #for multinom > # library(VGAM) > # library(plyr) #for testing recode of factor, using revalue > # # source("R/LinMod.R") > # > # > # # ==== notes === > # > # #checks needed: > # # A) Ensure data parameter should work it is 1) explicitly defined, 2 found in environment, 3) not found > # # B) Check "special" parameters (substitute, weight, and na.action parameters) > # # C) check non-literal variables > # > # hsb2 <- as.data.frame(read_dta("https://stats.idre.ucla.edu/stat/stata/notes/hsb2.dta")) > # hsb2$honcomp <- hsb2$write >= 60 > # > # hsb2$write_cat <- cut(hsb2$write, breaks = c(30,40,50,60,70)) > # hsb2$race_cat <- factor(hsb2$race) > # > # > # # ==== GLM ==== > # > # #"Data" and "model" object components are both usable (we give priority to model) > # base.logit <- glm(honcomp ~ female + read + science + ses, hsb2, family="binomial") > # PseudoR2(base.logit) > # > # #"Data" object is reference to global environment (but we have a model object) > # base2.logit <- glm(hsb2$honcomp ~ hsb2$female + hsb2$read + hsb2$science + hsb2$ses, family="binomial") > # PseudoR2(base2.logit) > # > # #POSSIBLE ISSUE: no model object (only data), and a non-literal DV (eg, read > 60) > # #A1 tests are covered above > # > # #A2a - variables in global environment > # y <- hsb2$honcomp > # test_a2.logit <- glm(y ~ hsb2$female + hsb2$read + hsb2$science + hsb2$ses, family="binomial", model = FALSE) > # PseudoR2(test_a2.logit) > # #NB: doesn't give useful name of object that needs new evaluation > # > # #A3a - "data" object is reference to global environment > # z <- hsb2$honcomp > # test_a3a.logit <- glm(z ~ hsb2$female + hsb2$read + hsb2$science + hsb2$ses, family="binomial", model = FALSE, x = TRUE, y = TRUE) > # rm(z) > # PseudoR2(test_a3a.logit) > # > # #A3b - "data" object is contained in data frame > # tempdf <- hsb2 > # test_a3b.logit <- glm(honcomp ~ female + read + science + ses, tempdf, family="binomial", model = FALSE) > # PseudoR2(test_a3b.logit) > # tempdf <- tempdf[1:100,] > # PseudoR2(test_a3b.logit) > # rm(tempdf) > # PseudoR2(test_a3b.logit) > # > # > # # ---- B ---- > # #WEIGHTS > # #Weights are created on-the-fly via runif > # test_b1.logit <- glm(honcomp ~ female + read + science + ses, hsb2, family="binomial", weights = runif(nrow(hsb2)), model = FALSE) > # PseudoR2(test_b1.logit) > # PseudoR2(test_b1.logit) > # > # #Weights are saved > # test_weights <- runif(nrow(hsb2)) > # test_b2.logit <- glm(honcomp ~ female + read + science + ses, data = hsb2, family="binomial", weights = test_weights, model = FALSE) > # rm(test_weights) > # PseudoR2(test_b2.logit) > # > # withna.df <- rbind(hsb2[1:100,], NA, NA, hsb2[101:200,]) > # test_b3.logit <- glm(honcomp ~ female + read + science + ses, data = withna.df, family="binomial", weights = runif(nrow(withna.df)), model = FALSE) > # PseudoR2(test_b3.logit) > # > # #NA.ACTION > # #Could try using the na.omit attribute of glms here to handle, but it's a lot of work for little return > # test_b4.logit <- glm(honcomp ~ female + read + science + ses, data = rbind(hsb2, NA), family="binomial", model = FALSE, na.action = na.omit) > # PseudoR2(test_b4.logit) > # > # test_naAction <- na.omit > # test_b5.logit <- glm(honcomp ~ female + read + science + ses, data = rbind(hsb2, NA), family="binomial", model = TRUE, na.action = test_naAction) > # rm(test_naAction) > # PseudoR2(test_b5.logit) > # > # test_naAction <- na.omit > # test_b6.logit <- glm(honcomp ~ female + read + science + ses, data = rbind(hsb2, NA), family="binomial", model = FALSE, na.action = test_naAction) > # rm(test_naAction) > # PseudoR2(test_b6.logit) > # > # > # # ---- C ---- > # > # #DV, With model > # test_c1.logit <- glm((hsb2$write_cat == "(30,40]" | hsb2$write_cat == "(40,50]") ~ female + read + science + ses, hsb2, family="binomial") > # PseudoR2(test_c1.logit) > # > # #DV, without model, out of data frame > # test_c2.logit <- glm((hsb2$write_cat == "(30,40]" | hsb2$write_cat == "(40,50]") ~ hsb2$female + hsb2$read + hsb2$science + hsb2$ses, family="binomial", model = FALSE) > # PseudoR2(test_c2.logit) > # > # #DV, without model, in data frmae > # test_c3.logit <- glm((write_cat == "(30,40]" | hsb2$write_cat == "(40,50]") ~ female + read + science + ses, hsb2, family="binomial", model = FALSE) > # PseudoR2(test_c3.logit) > # > # #IV, without model, no data frame > # test_c4.logit <- glm(hsb2$honcomp ~ hsb2$female + (hsb2$read > 50) + hsb2$science + hsb2$ses, family="binomial", model = FALSE) > # PseudoR2(test_c4.logit) > # > # #IV, without model, with data frame > # test_c5.logit <- glm(honcomp ~ female + (read > 50) + science + ses, family="binomial", data = hsb2, model = FALSE) > # PseudoR2(test_c5.logit) > # > # > # # ==== POLR ==== > # > # #"Data" and "model" object components are both usable (we give priority to model) > # base.polr <- polr(write_cat ~ female + read + science + ses, hsb2) > # PseudoR2(base.polr) > # > # # ---- A ---- > # > # #A1: polr does not return "data" component, so explicit reference is impossible > # > # #A2: polr object "call" component references valid data frame > # #Unlike in glm, polr doesn't save a data object > # test_a2.polr <- polr(write_cat ~ female + read + science + ses, hsb2, model = FALSE) > # PseudoR2(test_a2.polr) > # > # #POSSIBLE ISSUE: no model object (only data), and a non-literal DV (eg, read > 60) > # > # #A3 > # #"call" references objects in global environment > # y <- cut(hsb2$write, breaks = c(30,40,50,60,70)) > # test_a3a.polr <- polr(y ~ hsb2$female + hsb2$read + hsb2$science + hsb2$ses, model = FALSE) > # PseudoR2(test_a3a.polr) > # > # #A3b - "call" references invalid data frame > # tempdf <- hsb2 > # test_a3b.polr <- polr(write_cat ~ female + read + science + ses, data = tempdf, model = FALSE) > # rm(tempdf) > # PseudoR2(test_a3b.polr) > # > # > # > # # ---- B ---- > # #WEIGHTS > # #Weights are created on-the-fly via runif > # test_b1.polr <- polr(write_cat ~ female + read + science + ses, hsb2, weights = runif(nrow(hsb2)), model = FALSE) > # PseudoR2(test_b1.polr) > # > # #Weights are saved > # test_weights <- runif(nrow(hsb2)) > # test_b2.polr <- polr(write_cat ~ female + read + science + ses, weights = test_weights, data = hsb2, model = FALSE) > # PseudoR2(test_b2.polr) > # rm(test_weights) > # PseudoR2(test_b2.polr) > # > # withna.df <- rbind(hsb2[1:100,], NA, NA, hsb2[101:200,]) > # test_b3.polr <- polr(write_cat ~ female + read + science + ses, data = withna.df, weights = runif(nrow(withna.df)), model = FALSE) > # PseudoR2(test_b3.polr) > # > # #NA.ACTION > # test_b4.polr <- polr(write_cat ~ female + read + science + ses, data = rbind(hsb2, NA), model = FALSE, na.action = na.omit) > # PseudoR2(test_b4.polr) > # > # test_naAction <- na.omit > # test_b5.polr <- polr(write_cat~ female + read + science + ses, data = rbind(hsb2, NA), model = TRUE, na.action = test_naAction) > # PseudoR2(test_b5.polr) > # test_naAction <- na.fail > # PseudoR2(test_b5.polr) > # > # test_naAction <- na.omit > # test_b6.logit <- glm(honcomp ~ female + read + science + ses, data = rbind(hsb2, NA), family="binomial", model = FALSE, na.action = test_naAction) > # PseudoR2(test_b6.logit) > # test_naAction <- na.fail > # PseudoR2(test_b6.logit) > # > # # ---- C ---- > # > # > # #DV, without model, out of data frame > # test_c1.polr <- polr(revalue(write_cat, c("(30,40]" = "(30,50]", "(40,50]" = "(30,50]")) ~ female + read + science + ses, hsb2, model = FALSE) > # PseudoR2(test_c1.polr) > # > # #DV, without model, in data frmae > # test_c2.polr <- polr(revalue(hsb2$write_cat, c("(30,40]" = "(30,50]", "(40,50]" = "(30,50]")) ~ hsb2$female + hsb2$read + hsb2$science + hsb2$ses, model = FALSE) > # PseudoR2(test_c2.polr) > # > # #IV, without model, no data frame > # test_c3.polr <- polr(hsb2$write_cat ~ hsb2$female + (hsb2$read > 50) + hsb2$science + hsb2$ses, model = FALSE) > # PseudoR2(test_c3.polr) > # > # #IV, without model, with data frame > # test_c4.polr <- polr(write_cat ~ female + (read > 50) + science + ses, hsb2, model = FALSE) > # PseudoR2(test_c4.polr) > # > # > # # ==== Multinom ==== > # > # #"Data" and "model" object components are both usable (we give priority to model) > # base.multinom <- multinom(race_cat ~ female + read + science + ses, hsb2, model = TRUE) > # PseudoR2(base.multinom) > # > # # ---- A ---- > # > # #A1: multinom does not return "data" component, so expciCit reference is impossible > # > # #A2: multinom object "call" component references valid data frame > # test_a2.multinom <- multinom(race_cat ~ female + read + science + ses, hsb2, model = FALSE) > # PseudoR2(test_a2.multinom) > # > # #A3 > # #Unlike in glm, multinom won't save an enviornment labelled as "data" > # #"call" references objects in global environment > # #NOTE: could theoretically get the variables from call$formula, althiugh this would be risky > # y_nominal <- hsb2$race_cat > # test_a3a.multinom <- multinom(y_nominal ~ hsb2$female + hsb2$read + hsb2$science + hsb2$ses, model = FALSE) > # PseudoR2(test_a3a.multinom) > # > # #A3b - "call" references invalid data frame > # tempdf <- hsb2 > # test_a3b.multinom <- multinom(race_cat ~ female + read + science + ses, data = tempdf, model = FALSE) > # PseudoR2(test_a3b.multinom) > # rm(tempdf) > # PseudoR2(test_a3b.multinom) > # > # > # > # # ---- B ---- > # #WEIGHTS > # #Weights are created on-the-fly via runif > # #Multinom saves a "weights" element, which is equivalent to the glm "prior.weights" element > # test_b1.multinom <- multinom(race_cat ~ female + read + science + ses, hsb2, weights = runif(nrow(hsb2)), model = TRUE) > # PseudoR2(test_b1.multinom) > # > # #Weights are saved > # test_weights <- runif(nrow(hsb2)) > # test_b2.multinom <- multinom(race_cat ~ female + read + science + ses, weights = test_weights, data = hsb2, model = FALSE) > # PseudoR2(test_b2.multinom) > # rm(test_weights) > # PseudoR2(test_b2.multinom) > # > # withna.df <- rbind(hsb2[1:100,], NA, NA, hsb2[101:200,]) > # test_b3.multinom <- multinom(race_cat ~ female + read + science + ses, data = withna.df, weights = runif(nrow(withna.df)), model = FALSE) > # PseudoR2(test_b3.multinom) > # > # #NA.ACTION > # test_b4.multinom <- multinom(race_cat ~ female + read + science + ses, data = rbind(hsb2, NA), model = FALSE, na.action = na.omit) > # PseudoR2(test_b4.multinom) > # > # test_naAction <- na.omit > # test_b5.multinom <- multinom(race_cat ~ female + read + science + ses, data = rbind(hsb2, NA), model = TRUE, na.action = test_naAction) > # PseudoR2(test_b5.multinom) > # test_naAction <- na.fail > # PseudoR2(test_b5.multinom) > # > # #QUIETLY RE-FIT MULTINOM > # > # # ---- C ---- > # > # #DV, With model > # test_c1.multinom <- multinom(revalue(race_cat, c("1" = "1", "2" = "1")) ~ female + read + science + ses, hsb2, model = TRUE) > # PseudoR2(test_c1.multinom) > # > # #DV, without model, out of data frame > # test_c2.multinom <- multinom(revalue(hsb2$race_cat, c("1" = "1", "2" = "1")) ~ hsb2$female + hsb2$read + hsb2$science + hsb2$ses, model = FALSE) > # PseudoR2(test_c2.multinom) > # > # #DV, without model, in data frame > # test_c2.multinom <- multinom(revalue(race_cat, c("1" = "1", "2" = "1")) ~ female + read + science + ses, hsb2, model = FALSE) > # PseudoR2(test_c2.multinom) > # > # #IV, without model, no data frame > # test_c4.multinom <- multinom(hsb2$race_cat ~ hsb2$female + (hsb2$read > 50) + hsb2$science + hsb2$ses, model = FALSE) > # PseudoR2(test_c4.multinom) > # > # #IV, without model, with data frame > # test_c5.multinom <- multinom(race_cat ~ female + (read > 50) + science + ses, data = hsb2, model = FALSE) > # PseudoR2(test_c5.multinom) > # > # > # > # # === VGLM ==== > # > # #Because of the very wide variety of possible VGLM models and related parameters + functional forms, we can't easily take the same testing approach as above > # #We'll instead starty by testing the models listed in the VGAM help file > # > # # Example 1. See help(glm) > # print(d.AD <- data.frame(treatment = gl(3, 3), > # outcome = gl(3, 1, 9), > # counts = c(18,17,15,20,10,20,25,13,12))) > # vglm.D93 <- vglm(counts ~ outcome + treatment, family = poissonff, > # data = d.AD, trace = TRUE, model = TRUE) > # summary(vglm.D93) > # PseudoR2(vglm.D93) > # > # > # # Example 2. Multinomial logit model > # pneumo <- transform(pneumo, let = log(exposure.time)) > # vglm.pneumo <- vglm(cbind(normal, mild, severe) ~ let, multinomial, data = pneumo, model = TRUE) > # PseudoR2(vglm.pneumo) > # > # # Example 3. Proportional odds model > # fit3 <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo, model = TRUE) > # PseudoR2(fit3) > # > # # Example 4. Bivariate logistic model > # fit4 <- vglm(cbind(nBnW, nBW, BnW, BW) ~ age, binom2.or, coalminers, model = TRUE) > # PseudoR2(fit4) > # > # > # # Example 5. The use of the xij argument (simple case). > # # The constraint matrix for 'op' has one column. > # nn <- 1000 > # eyesdat <- round(data.frame(lop = runif(nn), > # rop = runif(nn), > # op = runif(nn)), digits = 2) > # eyesdat <- transform(eyesdat, eta1 = -1 + 2 * lop, > # eta2 = -1 + 2 * lop) > # eyesdat <- transform(eyesdat, > # leye = rbinom(nn, size = 1, prob = logit(eta1, inverse = TRUE)), > # reye = rbinom(nn, size = 1, prob = logit(eta2, inverse = TRUE))) > # fit5 <- vglm(cbind(leye, reye) ~ op, > # binom2.or(exchangeable = TRUE, zero = 3), > # data = eyesdat, trace = TRUE, > # xij = list(op ~ lop + rop + fill(lop)), > # form2 = ~ op + lop + rop + fill(lop), > # model = TRUE) > # PseudoR2(fit5) > > proc.time() user system elapsed 0.14 0.04 0.17