context("Simulate Design") my_population <- declare_model(N = 50, noise = rnorm(N)) my_potential_outcomes <- declare_potential_outcomes(Y_Z_0 = noise, Y_Z_1 = noise + rnorm(N, mean = 2, sd = 2)) my_assignment <- declare_assignment(Z = complete_ra(N, m = 25)) my_inquiry <- declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) my_estimator <- declare_estimator(Y ~ Z, inquiry = my_inquiry) my_measurement <- declare_measurement(Y = reveal_outcomes(Y ~ Z)) my_design_1 <- my_population + my_potential_outcomes + my_inquiry + my_assignment + my_measurement + my_estimator my_design_2 <- my_design_1 test_that("Simulate Design works", { sims <- simulate_design(my_design_1, sims = 5) expect_equal(nrow(sims), 5) sims <- simulate_design(my_design_1, my_design_2, sims = 5) expect_equal(nrow(sims), 10) expect_true(all(sims$design %in% c("my_design_1", "my_design_2"))) sims <- simulate_design(list(my_design_1, my_design_2), sims = 5) expect_equal(nrow(sims), 10) expect_true(all(sims$design %in% c("design_1", "design_2"))) sims <- simulate_design(a = my_design_1, b = my_design_2, sims = 5) expect_true(all(sims$design %in% c("a", "b"))) }) test_that("Simulate Design works x2", { f1 <- local({i <- 0; function(){i<<- i+1; i} }) f2 <- local({i <- 0; function(){i<<- i+1; i} }) f3 <- local({i <- 0; function(){i<<- i+1; i} }) e1 <- declare_inquiry(a=f1()) e2 <- declare_inquiry(b=f2()) e3 <- declare_inquiry(c=f3()) out <- simulate_design(declare_model(sleep) + e1 + e2 + e3, sims=c(1,1,5,2)) expect_equal(out$estimand, as.vector(t(out[(1:10)*3, c("step_1_draw", "step_3_draw", "step_4_draw")]))) }) my_designer <- function(N, tau) { pop <- declare_model(N = N) pos <- declare_potential_outcomes(Y_Z_0 = rnorm(N), Y_Z_1 = Y_Z_0 + tau) my_assignment <- declare_assignment(Z = complete_ra(N, m = floor(N / 2))) my_inquiry <- declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) my_estimator <- declare_estimator(Y ~ Z, inquiry = my_inquiry) my_measurement <- declare_measurement(Y = reveal_outcomes(Y ~ Z)) my_design_1 <- pop + pos + my_inquiry + my_assignment + my_measurement + my_estimator my_design_1 } test_that("expand and simulate", { my_designs <- expand_design(my_designer, N = c(10, 50), tau = c(5, 1), prefix = "custom_prefix" ) sims <- simulate_design(my_designs, sims = 5) expect_equal(nrow(sims), 20) expect_true(all(sims$design %in% c("custom_prefix_1", "custom_prefix_2", "custom_prefix_3", "custom_prefix_4"))) expect_true(all(c("N", "tau") %in% colnames(sims))) }) test_that("wrong number of sims yields error", { expect_error(simulate_design(my_design_1, sims = rep(5, 3)), "Please provide sims a scalar or a numeric vector of length the number of steps in designs.") }) test_that("zero sims yields error", { expect_error(simulate_design(my_design_1, sims = -1), "Sims should be >= 1") }) test_that("dupe designs give error", { expect_error(simulate_design(my_design_1, my_design_1), "You have more than one design named my_design_1") }) test_that("no estimates inquiries declared", { my_design_noestmand <- delete_step(my_design_1, my_inquiry) my_design_noestmand <- delete_step(my_design_noestmand, my_estimator) expect_error(simulate_design(my_design_noestmand, sims = 2), "No estimates or inquiries were declared, so design cannot be simulated.") }) test_that("designs with some estimators that don't have p.values return the p.values for the estimators that do have them", { my_custom_estimator <- function(data) return(data.frame(estimate = 5)) des <- declare_model(N = 100) + declare_potential_outcomes(Y ~ .25 * Z + rnorm(N)) + declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) + declare_assignment(Z = complete_ra(N, prob = 0.5)) + declare_measurement(Y = reveal_outcomes(Y ~ Z)) + declare_estimator(Y ~ Z, inquiry = "ATE", label = "blah") + declare_estimator(handler = label_estimator(my_custom_estimator), inquiry = "ATE") expect_equivalent(names(simulate_design(des, sims = 1)), c("design", "sim_ID", "inquiry", "estimand", "estimator", "term", "estimate", "std.error", "statistic", "p.value", "conf.low", "conf.high", "df", "outcome")) expect_equal(nrow(get_diagnosands(diagnose_design(des, sims = 2, diagnosands = declare_diagnosands(power = mean(p.value <= 0.05))))), 2) })