context("Potential Outcomes") test_that("custom po handler", { # draw POs for it without arguments my_po_function <- function(data) { data$Y_Z_0 <- with(data, .25 + extra) data$Y_Z_1 <- with(data, extra) data } ## debugonce(declare_potential_outcomes) my_po_custom <- declare_potential_outcomes(handler = my_po_function) rm(my_po_function) pop_custom <- my_po_custom(sleep) expect_equal(colnames(pop_custom), c("extra", "group", "ID", "Y_Z_0", "Y_Z_1")) }) test_that("custom po handler with args", { ## draw POs for it with arguments my_po_function <- function(data, q) { data$Y_Z_0 <- with(data, q + extra) data$Y_Z_1 <- with(data, extra) data } ## debugonce(declare_potential_outcomes) my_po_custom <- declare_potential_outcomes( handler = my_po_function, q = 2 ) ## debugonce(my_po_custom) rm(my_po_function) pop_custom <- my_po_custom(sleep) expect_equal(colnames(pop_custom), c("extra", "group", "ID", "Y_Z_0", "Y_Z_1")) expect_equal(pop_custom$Y_Z_1[1] - pop_custom$Y_Z_0[1], -2) }) test_that("PO as discrete variables works", { my_potential_outcomes <- declare_potential_outcomes( Y_Z_0 = extra, Y_Z_1 = extra + 5 ) expect_equal( colnames(my_potential_outcomes(sleep)), c("extra", "group", "ID", "Y_Z_0", "Y_Z_1") ) }) test_that("PO as a formula works", { my_potential_outcomes_explicit <- declare_potential_outcomes(formula = R ~ rbinom(n = N, size = 1, prob = 1)) my_potential_outcomes_implicit <- declare_potential_outcomes(R ~ rbinom(n = N, size = 1, prob = 1)) expect_identical( my_potential_outcomes_explicit(sleep), my_potential_outcomes_implicit(sleep) ) }) test_that("POs at a higher level", { library(dplyr) my_population <- declare_model( villages = add_level(N = 3, elevation = rnorm(N)), citizens = add_level(N = 4, income = runif(N)) ) pop <- my_population() # Four ways of doing the same thing # with "level" argument in a "formula" version my_potential_outcomes_formula <- declare_potential_outcomes( formula = Y_vil ~ elevation + 5 + 2 * Z, level = villages ) my_potential_outcomes_formula(pop) # with "level" argument in a "formula" version my_potential_outcomes_formula <- declare_potential_outcomes( formula = Y_vil ~ elevation + 5 + 2 * Z, level = villages ) my_potential_outcomes_formula(pop) # with "level" argument in a "discrete" version my_potential_outcomes_discrete <- declare_potential_outcomes( Y_vil_Z_0 = elevation + 5, Y_vil_Z_1 = elevation + 5 + 2, level = villages ) my_potential_outcomes_discrete(pop) # with custom function my_custom_PO <- function(data) { data %>% group_by(villages) %>% mutate( Y_vil_Z_0 = elevation + 5, Y_vil_Z_1 = elevation + 5 + 2 ) } my_custom_PO(pop) my_potential_outcomes <- declare_potential_outcomes( formula = Y_vil ~ elevation + 5 + 2 * Z ) my_design <- declare_model(data = pop) + declare_step(group_by, villages) + my_potential_outcomes my_design <- declare_model(data = pop) + declare_step(group_by, villages) + my_potential_outcomes expect_equal(nrow(draw_data(my_design)), 12) }) test_that("draw POs at a level using a variable from another level (now allowed)", { set.seed(50) my_population <- declare_model( villages = add_level(N = 2, elevation = runif(N)), citizens = add_level(N = 2, income = runif(N)) ) pop <- my_population() my_potential_outcomes_formula <- declare_potential_outcomes( formula = Y_vil ~ elevation + income + 5, level = villages ) expect_equivalent(my_potential_outcomes_formula(pop), structure(list(villages = c("1", "1", "2", "2"), elevation = c(0.708727096440271, 0.708727096440271, 0.437659863382578, 0.437659863382578), citizens = c("1", "2", "3", "4"), income = c(0.200004896614701, 0.767065986292437, 0.513161889044568, 0.0447038763668388), Y_vil_Z_0 = c(5.90873199305497, 6.47579308273271, 5.95082175242715, 5.48236373974942), Y_vil_Z_1 = c(5.90873199305497, 6.47579308273271, 5.95082175242715, 5.48236373974942)), class = "data.frame", row.names = c(NA, 4L), outcome_variable = "Y_vil", assignment_variables = "Z")) }) test_that("Potential outcomes with multiple assignment variables", { beta <- c(1, 3) my_potential_outcomes_formula <- declare_potential_outcomes( formula = test ~ extra + cbind(z1, z2) %*% beta, conditions = list(z1 = 0:1, z2 = 1:2) ) out <- my_potential_outcomes_formula(sleep) with(out, { expect_equal(extra + 3, test_z1_0_z2_1) expect_equal(extra + 4, test_z1_1_z2_1) expect_equal(extra + 6, test_z1_0_z2_2) expect_equal(extra + 7, test_z1_1_z2_2) }) my_potential_outcomes_formula <- declare_potential_outcomes( formula = test ~ extra + cbind(z1, z2) %*% beta, assignment_variables = c("z1", "z2") ) out <- my_potential_outcomes_formula(sleep) with(out, { expect_equal(extra, test_z1_0_z2_0) expect_equal(extra + 3, test_z1_0_z2_1) expect_equal(extra + 1, test_z1_1_z2_0) expect_equal(extra + 4, test_z1_1_z2_1) }) my_potential_outcomes_formula <- declare_potential_outcomes( formula = test ~ extra + cbind(z1, z2) %*% beta, assignment_variables = list("z1", "z2") ) out <- my_potential_outcomes_formula(sleep) with(out, { expect_equal(extra, test_z1_0_z2_0) expect_equal(extra + 3, test_z1_0_z2_1) expect_equal(extra + 1, test_z1_1_z2_0) expect_equal(extra + 4, test_z1_1_z2_1) }) }) test_that("Restore existing variables to be unchanged", { my_potential_outcomes_formula <- declare_potential_outcomes( formula = test ~ extra + group, conditions = list(group = 1:2) ) expect_identical( my_potential_outcomes_formula(sleep)$group, sleep$group ) }) test_that("PO warns if unnamed dot", { expect_warning( my_potential_outcomes_formula <- declare_potential_outcomes(NULL, sleep) ) }) test_that("Binary Potential outcomes", { my_potential_outcomes_formula <- declare_potential_outcomes( Y ~ draw_binary(prob = plogis(1000 * Z + extra)) ) out <- my_potential_outcomes_formula(sleep) expect_true(all(out$Y_Z_1 == 1)) }) test_that("Multiple assignment variables in PO", { po <- declare_potential_outcomes(Y ~ Z1 + Z2, conditions = list(Z1 = 0:1, Z2 = 0:1)) expect_length(colnames(po(sleep)) %i% c("Y_Z1_0_Z2_0", "Y_Z1_1_Z2_0", "Y_Z1_0_Z2_1", "Y_Z1_1_Z2_1"), 4) }) test_that("handler dispatches correctly", { po <- potential_outcomes_handler( Y ~ Z1 + Z2, conditions = expand.grid(Z1 = 0:1, Z2 = 0:1), assignment_variables = c("Z1", "Z2"), data = sleep, level = NULL ) po2 <- potential_outcomes_handler( NULL, Y_Z1_0_Z2_0 = 0, Y_Z1_0_Z2_1 = 1, Y_Z1_1_Z2_0 = 1, Y_Z1_1_Z2_1 = 2, data = sleep, level = NULL ) expect_length(names(po) %i% c("Y_Z1_0_Z2_0", "Y_Z1_1_Z2_0", "Y_Z1_0_Z2_1", "Y_Z1_1_Z2_1"), 4) expect_length(names(po2) %i% c("Y_Z1_0_Z2_0", "Y_Z1_1_Z2_0", "Y_Z1_0_Z2_1", "Y_Z1_1_Z2_1"), 4) })