test_Jeffreys <- function(n.iter) { for(i in 1:n.iter) { set.seed(i) X1 <- mvtnorm::rmvnorm(100, sigma = diag(0.1 * i + 0.5, 5), mean = rep(1, 5)) X2 <- as.data.frame(mvtnorm::rmvnorm(100, mean = rep(0, 5), sigma = diag(1, 5))) set.seed(i) res.Jeffreys <- DataSimilarity::Jeffreys(X1, X2, seed = i) testthat::test_that("output type", { # check length and names of output testthat::expect_length(res.Jeffreys, 7) testthat::expect_named(res.Jeffreys, c("statistic", "p.value", "estimate", "alternative", "method", "data.name", "parameters")) # statistic and p values are not NA testthat::expect_false(is.na(res.Jeffreys$statistic)) # output should be numeric testthat::expect_s3_class(res.Jeffreys, "htest") }) res.Jeffreys.1 <- DataSimilarity::Jeffreys(X1[, 1, drop = FALSE], X2[, 1, drop = FALSE], seed = i) testthat::test_that("output type", { # check length and names of output testthat::expect_length(res.Jeffreys.1, 7) testthat::expect_named(res.Jeffreys.1, c("statistic", "p.value", "estimate", "alternative", "method", "data.name", "parameters")) # statistic and p values are not NA testthat::expect_false(is.na(res.Jeffreys.1$statistic)) # output should be numeric testthat::expect_s3_class(res.Jeffreys.1, "htest") }) } } set.seed(0305) test_Jeffreys(1)