testMW <- function(n.iter) { if(requireNamespace("LPKsample", quietly = TRUE)) { for(i in 1:n.iter) { set.seed(i) X1 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10), mean = runif(10, -2, 2)) X2 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2), sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10)) X3 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10), mean = runif(10, -2, 2)) X4 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2), sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10)) X5 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10), mean = runif(10, -2, 2)) X6 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2), sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10)) set.seed(i) res.GLP <- LPKsample::GLP(rbind(X1, X2, X3, X4, X5, X6), c(rep(1, nrow(X1)), rep(2, nrow(X2)), rep(3, nrow(X3)), rep(4, nrow(X4)), rep(5, nrow(X5)), rep(6, nrow(X6))), combine.criterion = "kernel") set.seed(i) res.GLP.perm <- LPKsample::GLP(rbind(X1, X2, X3, X4, X5, X6), c(rep(1, nrow(X1)), rep(2, nrow(X2)), rep(3, nrow(X3)), rep(4, nrow(X4)), rep(5, nrow(X5)), rep(6, nrow(X6))), combine.criterion = "kernel", perm = 3) res.MW <- DataSimilarity::MW(X1, X2, as.data.frame(X3), X4, X5, X6, seed = i) res.MW.perm <- DataSimilarity::MW(X1, X2, as.data.frame(X3), X4, X5, X6, n.perm = 3, seed = i) testthat::test_that("output type", { # check length and names of output testthat::expect_length(res.MW, 8) testthat::expect_named(res.MW, c("statistic", "parameter", "p.value", "estimate", "alternative", "method", "data.name", "components")) testthat::expect_length(res.MW.perm, 8) testthat::expect_named(res.MW.perm, c("statistic", "parameter", "p.value", "estimate", "alternative", "method", "data.name", "components")) # check p values in [0,1] testthat::expect_lte(res.MW$p.value, 1) testthat::expect_gte(res.MW$p.value, 0) testthat::expect_lte(res.MW.perm$p.value, 1) testthat::expect_gte(res.MW.perm$p.value, 0) # statistic and p values are not NA testthat::expect_false(is.na(res.MW$statistic)) testthat::expect_false(is.na(res.MW$p.value)) testthat::expect_false(is.na(res.MW.perm$statistic)) testthat::expect_false(is.na(res.MW.perm$p.value)) # output should be numeric testthat::expect_s3_class(res.MW, "htest") testthat::expect_s3_class(res.MW.perm, "htest") }) testthat::test_that("output values", { # check test statistic values testthat::expect_equal(res.MW$statistic, res.GLP$GLP, check.attributes = FALSE) testthat::expect_equal(res.MW.perm$statistic, res.GLP.perm$GLP, check.attributes = FALSE) # check test p values testthat::expect_equal(res.MW$p.value, res.GLP$pval, check.attributes = FALSE) testthat::expect_equal(res.MW.perm$p.value, res.GLP.perm$pval, check.attributes = FALSE) }) # LPKsample implementation does not work for univariate data --> cannot fix here } } } set.seed(0305) testMW(1)