testBMG <- function(n.iter) { for(i in 1:n.iter) { set.seed(i) X1 <- mvtnorm::rmvnorm(100, sigma = diag(1, 5), mean = rep(i, 5)) X2 <- as.data.frame(mvtnorm::rmvnorm(100, mean = rep(0, 5), sigma = diag(1, 5))) n.comb <- nrow(X1) + nrow(X2) set.seed(i) res.BMG.asymp <- DataSimilarity::BMG(X1, X2, seed = i, asymptotic = TRUE) res.BMG <- DataSimilarity::BMG(X1, X2, seed = i, asymptotic = FALSE) res.HP <- DataSimilarity::HamiltonPath(X1, X2, seed = i) testthat::test_that("output type", { # check length and names of output testthat::expect_length(res.BMG, 7) testthat::expect_length(res.BMG.asymp, 7) testthat::expect_named(res.BMG, c("statistic", "p.value", "estimate", "alternative", "method", "data.name", "parameters")) testthat::expect_named(res.BMG.asymp, c("statistic", "p.value", "estimate", "alternative", "method", "data.name", "parameters")) testthat::expect_length(res.HP, 2 * (n.comb - 1)) # check p values in [0,1] testthat::expect_lte(res.BMG$p.value, 1) testthat::expect_gte(res.BMG$p.value, 0) testthat::expect_lte(res.BMG.asymp$p.value, 1) testthat::expect_gte(res.BMG.asymp$p.value, 0) # statistic and p values are not NA testthat::expect_false(is.na(res.BMG$statistic)) testthat::expect_false(is.na(res.BMG$p.value)) testthat::expect_false(is.na(res.BMG.asymp$statistic)) testthat::expect_false(is.na(res.BMG.asymp$p.value)) # output should be numeric testthat::expect_s3_class(res.BMG, "htest") testthat::expect_s3_class(res.BMG.asymp, "htest") }) set.seed(i) res.BMG.asymp.1 <- DataSimilarity::BMG(X1[, 1, drop = FALSE], X2[, 1, drop = FALSE], seed = i, asymptotic = TRUE) res.BMG.1 <- DataSimilarity::BMG(X1[, 1, drop = FALSE], X2[, 1, drop = FALSE], seed = i, asymptotic = FALSE) res.HP.1 <- DataSimilarity::HamiltonPath(X1[, 1, drop = FALSE], X2[, 1, drop = FALSE], seed = i) testthat::test_that("output type", { # check length and names of output testthat::expect_length(res.BMG.1, 7) testthat::expect_length(res.BMG.asymp.1, 7) testthat::expect_named(res.BMG.1, c("statistic", "p.value", "estimate", "alternative", "method", "data.name", "parameters")) testthat::expect_named(res.BMG.asymp.1, c("statistic", "p.value", "estimate", "alternative", "method", "data.name", "parameters")) testthat::expect_length(res.HP.1, 2 * (n.comb - 1)) # check p values in [0,1] testthat::expect_lte(res.BMG.1$p.value, 1) testthat::expect_gte(res.BMG.1$p.value, 0) testthat::expect_lte(res.BMG.asymp.1$p.value, 1) testthat::expect_gte(res.BMG.asymp.1$p.value, 0) # statistic and p values are not NA testthat::expect_false(is.na(res.BMG.1$statistic)) testthat::expect_false(is.na(res.BMG.1$p.value)) testthat::expect_false(is.na(res.BMG.asymp.1$statistic)) testthat::expect_false(is.na(res.BMG.asymp.1$p.value)) # output should be numeric testthat::expect_s3_class(res.BMG.1, "htest") testthat::expect_s3_class(res.BMG.asymp.1, "htest") }) testthat::test_that("output values", { # check output value of test statistic testthat::expect_equal(res.BMG$statistic, res.BMG.asymp$statistic) }) } } set.seed(0305) testBMG(1)