test_that("Test DRomics on RNAseq data", { skip_on_cran() # importation and check of RNAseq data and normalization # with respect to library size and transformation # options to put in shiny : transfo.method (2 methods, rlog or vst) datafilename <- system.file("extdata", "RNAseq_sample.txt", package="DRomics") # small data set 'less than 1000 items (999) (o.vst <- RNAseqdata(datafilename, check = TRUE, transfo.method = "vst")) plot(o.vst) plot(o.vst, range = 1.5) # boxplot visualizing outliers (o.vst.notblind <- RNAseqdata(datafilename, check = TRUE, transfo.method = "vst", transfo.blind = FALSE)) plot(o.vst.notblind) (o.rlog <- RNAseqdata(datafilename, check = TRUE, transfo.method = "rlog")) plot(o.rlog) (o.rlog.notblind <- RNAseqdata(datafilename, check = TRUE, transfo.method = "rlog", transfo.blind = FALSE)) plot(o.rlog.notblind) data(Zhou_kidney_pce) # variance stabilizing tranformation (o1 <- RNAseqdata(Zhou_kidney_pce, check = TRUE, transfo.method = "vst")) plot(o1) # regularized logarithm (o2 <- RNAseqdata(Zhou_kidney_pce, check = TRUE, transfo.method = "rlog")) plot(o2) # variance stabilizing tranformation (not blind to the experimental design) (o3 <- RNAseqdata(Zhou_kidney_pce, check = TRUE, transfo.method = "vst", transfo.blind = FALSE)) plot(o3) # regularized logarithm (not blind to the experimental design) (o4 <- RNAseqdata(Zhou_kidney_pce, check = TRUE, transfo.method = "rlog", transfo.blind = FALSE)) plot(o4) # item selection using the quadratic method # options to put in shiny : select.method (3 methods), FDR (numerical positive value < 1) o <- o.rlog (s_quad <- itemselect(o, select.method = "quadratic", FDR = 0.01)) (s_lin <- itemselect(o, select.method = "linear", FDR = 0.01)) (s_ANOVA <- itemselect(o, select.method = "ANOVA", FDR = 0.01)) (f <- drcfit(s_quad, progressbar = TRUE)) f$fitres plot(f) r <- bmdcalc(f) # various plot of fitted curves (without data) curvesplot(r$res, xmax = max(r$omicdata$dose), facetby = "model", colorby = "model") curvesplot(r$res, xmax = max(r$omicdata$dose), facetby = "typology") # plot of selection of curves curvesplot(r$res[r$res$trend == "bell", ], xmax = max(r$omicdata$dose), facetby = "id") # evaluate the impact of preventsfitsoutofrange, enablesfequal0inGP, enablesfequal0inlGP data(Zhou_kidney_pce) (o1 <- RNAseqdata(Zhou_kidney_pce, check = TRUE, transfo.method = "rlog")) s_quad1 <- itemselect(o1, select.method = "quadratic", FDR = 0.1) (f1 <- drcfit(s_quad1, preventsfitsoutofrange = FALSE, enablesfequal0inGP = FALSE, enablesfequal0inLGP = FALSE, progressbar = TRUE)) (f1bis <- drcfit(s_quad1, preventsfitsoutofrange = TRUE, enablesfequal0inGP = FALSE, enablesfequal0inLGP = FALSE, progressbar = TRUE)) (f1ter <- drcfit(s_quad1, preventsfitsoutofrange = TRUE, enablesfequal0inGP = TRUE, enablesfequal0inLGP = TRUE, progressbar = TRUE)) (idremovedinf1bis <- f1$fitres$id[!is.element(f1$fitres$id, f1bis$fitres$id)]) targetplot(items = idremovedinf1bis, f1, dose_log_transfo = FALSE) # (idchanged <- f1bis$fitres$id[which(f1bis$fitres$model != f1ter$fitres$model | # f1bis$fitres$f != f1ter$fitres$f)]) # targetplot(items = idchanged, f1bis, dose_log_transfo = TRUE) # targetplot(items = idchanged, f1ter, dose_log_transfo = TRUE) # f1bis$fitres[f1bis$fitres$id %in% idchanged, ] # f1ter$fitres[f1ter$fitres$id %in% idchanged, ] # calculation of benchmark doses # options in shiny : z (numerical positive value), x (numerical positive value : percentage) (r <- bmdcalc(f, z = 1, x = 10)) (r.2 <- bmdcalc(f, z = 2, x = 50)) # plot of BMD # options in shiny : BMDtype (2 possibilities), plottype (3 possibilities), by (3 possibilities) # hist.bins (integer for hist only) plot(r, BMDtype = "zSD", plottype = "ecdf", by = "none") plot(r, BMDtype = "xfold", plottype = "ecdf", by = "none") plot(r, plottype = "hist", by = "none", hist.bins = 10) plot(r, plottype = "density", by = "none") plot(r, plottype = "hist", by = "trend", hist.bins = 10) # Calculation of confidence intervals on BMDs by Bootstrap # niter <- 1000 niter <- 10 b <- bmdboot(r, niter = niter) # niter should be fixed at least at 1000 to get a reasonable precision plot(b) data(Zhou_kidney_pce) # exploration of an extreme case (BMD at 0) d <- Zhou_kidney_pce (o <- RNAseqdata(d)) plot(o) (s <- itemselect(o, select.method = "quadratic", FDR = 0.01)) (f <- drcfit(s, progressbar = TRUE)) head(f$fitres) r <- bmdcalc(f, z = 1) plot(r) bmdplotwithgradient(r$res, BMDtype = "zSD") bmdplotwithgradient(r$res, BMDtype = "zSD", BMD_log_transfo = FALSE) # no more 0 BMD values using argument minBMD # res0 <- r$res[r$res$BMD.zSD == 0, ] # curvesplot(res0, xmin =0.0000000001, xmax = max(f$omicdata$dose), # colorby = "model", dose_log_transfo = TRUE) # plot(f, items = r$res[r$res$BMD.zSD == 0, ]$id) # plot(f, items = r$res[r$res$BMD.zSD == 0, ]$id, dose_log_trans = TRUE) })