## Test good scenarios test_that("DI works with \"E\" model", { data("Switzerland") ## E model works mod_E <- DI(y = "yield", prop = 4:7, density = "density", DImodel = "E", estimate_theta = TRUE, data = Switzerland) expect_equal(mod_E$coefficients, c(8.31251807959244, 8.36919642340669, 15.2626513599391, 11.7781500742191, 3.55873211379141, -0.137755987617646, 0.83571275568028), ignore_attr = TRUE) mod_E_theta <- DI(y = "yield", prop = 4:7, treat = "nitrogen", block = "density", DImodel = "E", estimate_theta = TRUE, data = Switzerland) expect_equal(mod_E_theta$coefficients, c(7.71767135989568, 7.77434970370992, 14.6678046402423, 11.1833033545223, 2.79449615220446, -0.137755987617647, 0.965375640775469, 0.760301181253625), ignore_attr = TRUE) mod_E_theta <- DI(y = "yield", prop = 4:7, treat = "nitrogen", density = "density", DImodel = "E", estimate_theta = TRUE, data = Switzerland) expect_equal(mod_E_theta$coef, c(8.5452910, 8.6019694, 15.4954243, 12.0109230, 2.794496, -0.9653756, 0.1377560, 0.7603012), ignore_attr = TRUE) mod_E_theta_custom <- DI(y = "yield", prop = 4:7, treat = "nitrogen", block = "density", DImodel = "E", theta = 0.5, data = Switzerland) expect_equal(mod_E_theta_custom$coef, c(7.71483343, 7.77151177, 14.66496671, 11.18046542, 1.276282, -0.13775599, 1.16877634, 0.500000), ignore_attr = TRUE) # Additional special conditions to cover all situations in code mod_E <- DI(y = "yield", prop = 4:7, treat = "nitrogen", density = "density", DImodel = "E", extra_formula = ~p1:nitrogen, data = Switzerland) expect_equal(mod_E$coef, c(8.5985566700200202, 8.52407309971615, 15.4175280362485392, 11.9330267505285228, 5.1554594166571261, -0.6406529039456219, 0.13775598761764632, -0.4003438816546424), ignore_attr = TRUE) mod_E <- DI(y = "yield", prop = 4:7, block = "nitrogen", density = "density", DImodel = "E", extra_formula = ~p1:nitrogen, data = Switzerland) expect_equal(mod_E$coef, c(8.5985566700200202, 8.52407309971615, 15.4175280362485392, 11.9330267505285228, 5.1554594166571261, -0.6406529039456219, 0.13775598761764632, -0.4003438816546424), ignore_attr = TRUE) mod_E <- DI(y = "yield", prop = 4:7, estimate_theta = T, DImodel = "E", extra_formula = ~p1:nitrogen, data = Switzerland) expect_equal(mod_E$coef, c(8.79816909765492, 8.32361781247475, 15.2170727490071, 11.7325714632871, 3.221081, -1.62146559961042, 0.804511561097006), ignore_attr = TRUE) mod_E <- DI(y = "yield", prop = 4:7, theta = 0.5, DImodel = "E", data = Switzerland) expect_equal(mod_E$coef, c(8.43218081507944, 8.48885915889368, 15.3823140954261, 11.8978128097061, 1.313556, 0.5), ignore_attr = TRUE) }) # Most combinations are covered by the test cases in autoDI # Checking for additional cases which weren't handled there test_that("Additional test-cases for DI function", { data("Switzerland") available_models <- c("STR", "ID", "AV", "E", "FG", "ADD", "FULL") # Model with treatment and density and extra formula coefficients <- list("STR" = c(14.7325931464327, 0.338889885147146, -0.238739909717057, -0.0357565936016199), "ID" = c(12.7191573096262, 12.8599403616208, 19.8189815384772, 16.4000664930813, 0.0789205580693944, -0.368131033135327, -0.0480451360491652), "AV" = c(8.37376681890422, 8.42410991369333, 15.3126245184171, 11.8231829008885, 13.8613027010167, -0.85707214528136, 0.17586229967076, 0.00361903522292134), "E" = c(8.37376681890421, 8.42410991369333, 15.3126245184171, 11.8231829008885, 5.19798851288125, -0.857072145281361, 0.17586229967076, 0.00361903522292138), "FG" = c(8.04275198699745, 8.09102486468054, 15.5573333454879, 12.066277338473, 18.2468914418737, 9.70477849123567, 0.697832803984883, -0.895087245635806, 0.188314586667893, 0.00480165465840326), "ADD" = c(7.9211674672672, 8.16603686490083, 14.9115344207494, 12.6630338919457, 9.9818446117302, 8.4450637556713, 9.53731593345885, -0.127299299449124, -0.915704826082002, 0.195068114253214, 0.00544305113298685), "FULL" = c(7.9211674672672, 8.16603686490083, 14.9115344207494, 12.6630338919457, 9.72985117122586, 24.0010539929582, 14.0697090606876, 22.1975434375367, 12.7996579039913, 0.712959437834094, -0.915704826082003, 0.195068114253215, 0.00544305113298689)) models <- lapply(available_models, function(int_str){ mod <- DI(y = "yield", prop = 4:7, treat = "nitrogen", density = "density", extra_formula = ~ plot, FG = c("G", "G", "H", "H"), data = Switzerland, DImodel = int_str) expect_equal(mod$coefficients, coefficients[[int_str]], ignore_attr = TRUE) }) # Model with treatment and extra formula coefficients <- list("STR" = c(14.3798837946354, 0.472226683397857, -0.0318349230648342), "ID" = c(12.3938360952603, 12.5239439263854, 19.4746603897198, 16.0474206308018, -0.128420306719741, -0.0419468753200729), "AV" = c(8.557347892295, 8.61333495504708, 15.5062508191916, 12.0212104610836, 13.7602667961902, -0.753432769542902, 0.000394896949268814), "E" = c(8.55734789229499, 8.61333495504708, 15.5062508191915, 12.0212104610836, 5.16010004857132, -0.753432769542904, 0.000394896949268857), "FG" = c(8.24122525582619, 8.29555168019982, 15.7631312061979, 12.276795854859, 18.1385234335331, 9.569598253824, 0.616277024715319, -0.783926834356985, 0.00134354297097426), "ADD" = c(8.12851127157043, 8.37632785992546, 15.1254447318632, 12.8805635191488, 9.89883746064958, 8.38792815070444, 9.49008749067943, -0.164620580041107, -0.800463673245844, 0.00185799083219398), "FULL" = c(8.12851127157042, 8.37632785992547, 15.1254447318632, 12.8805635191488, 9.58970841517837, 23.8708183990981, 13.949380629015, 22.0931793897904, 12.7052010184325, 0.62840971446269, -0.800463673245844, 0.00185799083219402)) models <- lapply(available_models, function(int_str){ mod <- DI(y = "yield", prop = 4:7, treat = "nitrogen", extra_formula = ~ plot, FG = c("G", "G", "H", "H"), data = Switzerland, DImodel = int_str) expect_equal(mod$coefficients, coefficients[[int_str]], ignore_attr = TRUE) }) # Model with just extra formula coefficients <- list("STR" = c(15.0069626872072, -0.0399466155307287), "ID" = c(12.4310412685474, 12.5650242020063, 19.5187625341331, 16.0945446440076, -0.0441605423413487), "AV" = c(8.8269711821793, 8.906469377341, 15.8177196107957, 12.351013621998, 13.5669928746415, -0.0130359273140788), "E" = c(8.8269711821793, 8.906469377341, 15.8177196107957, 12.351013621998, 5.08762232799058, -0.0130359273140788), "FG" = c(8.52915340159294, 8.60795970991156, 16.0806792043195, 12.6134336707359, 17.9368964812065, 9.25954556539232, 0.523075808493804, -0.0126406843101482), "ADD" = c(8.42935873119389, 8.68891801506243, 15.4524555780312, 13.2219950563477, 9.68884597830234, 8.28101845613254, 9.42265158656329, -0.19258269370149, -0.0124262124953947), "FULL" = c(8.42935873119389, 8.68891801506243, 15.4524555780312, 13.2219950563477, 9.27280723825924, 23.5933910126348, 13.7114270330073, 21.9188337911023, 12.5703292102002, 0.533011696686164, -0.0124262124953947)) models <- lapply(available_models, function(int_str){ mod <- DI(y = "yield", prop = 4:7, extra_formula = ~ plot, FG = c("G", "G", "H", "H"), data = Switzerland, DImodel = int_str) expect_equal(mod$coefficients, coefficients[[int_str]], ignore_attr = TRUE) }) # Model with density and extra formula coefficients <- list("STR" = c(15.2312041965283, -0.304786490592827, -0.0420291739082572), "ID" = c(12.3324765061034, 12.4706928045875, 19.4277323846698, 16.0068157424997, 0.352692096189999, -0.0465788682945809), "AV" = c(8.82706133670023, 8.90655213440679, 15.8177965992039, 12.3510848417485, 13.5672214100844, -0.000539836639348497, -0.013031701489559), "E" = c(8.82706133670023, 8.90655213440679, 15.8177965992038, 12.3510848417485, 5.08770802878165, -0.00053983663934812, -0.013031701489559), "FG" = c(8.52998003730568, 8.60871674423055, 16.0814216246409, 12.6141218147411, 17.939046732214, 9.26200409328415, 0.524917782616992, -0.0050756675955452, -0.0126009242479091), "ADD" = c(8.43055794921086, 8.69006867899454, 15.4535466148142, 13.2230264659816, 9.6908851388531, 8.282631390706, 9.42410130360552, -0.191296194190481, -0.0075371760688523, -0.0123671497001649), "FULL" = c(8.43055794921086, 8.69006867899454, 15.4535466148142, 13.2230264659816, 9.27645933338346, 23.5968798902277, 13.7147526930691, 21.921896442718, 12.5732286442846, 0.535747913239408, -0.0075371760688523, -0.0123671497001648)) models <- lapply(available_models, function(int_str){ mod <- DI(y = "yield", prop = 4:7, density = "density", FG = c("G", "G", "H", "H"), extra_formula = ~ plot, data = Switzerland, DImodel = int_str) expect_equal(mod$coefficients, coefficients[[int_str]], ignore_attr = TRUE) }) }) ## Special conditions for the ADD model along with theta_CI test_that("ADD model works with theta", { data("Switzerland") mod_ADD_treat <- DI(y = "yield", treat = "nitrogen", DImodel = "ADD", prop = 4:7, data = Switzerland, estimate_theta = TRUE) expect_equal(mod_ADD_treat$coef, c(8.20728328146857, 8.44732385981388, 15.2043119670558, 13.0134282595101, 6.04716805325336, 5.09190694619538, 5.80285734859481, -0.936494203249058, -0.941661834080826, 0.78595066963828), ignore_attr = TRUE) #8.18542119397663, 8.4347651913239, 15.1857578074747, 12.9427523389733, 9.85581823286135, 8.35831709222467, 9.46561091111296, -0.183962680694284, -0.740738874359283 mod_ADD <- DI(y = "yield", DImodel = "ADD", prop = 4:7, data = Switzerland, estimate_theta = TRUE) expect_equal(mod_ADD$coef, c(7.8513433527586, 8.09323716891178, 14.8497165412014, 12.6422322301889, 7.32032604290266, 6.22099797598873, 7.03400285269713, -0.545604749698444, 0.856025879261015), ignore_attr = TRUE) #7.88878936443855, 8.13813336178581, 14.8891259779366, 12.6461205094352, 10.1178646560904, 8.6203635154537, 9.72765733434199, 0.0780837425347466 # Confidence interval for theta theta_CI(mod_ADD) }) ## Special conditions for the FG model test_that("FG model works with theta", { data("Switzerland") mod_FG_treat <- DI(y = "yield", treat = "nitrogen", DImodel = "FG", prop = 4:7, FG = c("G", "G", "H", "H"), data = Switzerland, estimate_theta = TRUE) expect_equal(mod_FG_treat$coef, c(8.31620467951036, 8.3728830233246, 15.8716577347265, 12.3871564490065, 10.4737628188265, 3.88086134464133, -2.04718179494063, -0.972602380260069, 0.752389619705663), ignore_attr = TRUE) #8.18542119397663, 8.4347651913239, 15.1857578074747, 12.9427523389733, 9.85581823286135, 8.35831709222467, 9.46561091111296, -0.183962680694284, -0.740738874359283 mod_FG <- DI(y = "yield", DImodel = "FG", prop = 4:7, FG = c("G", "G", "H", "H"), data = Switzerland, estimate_theta = TRUE) expect_equal(mod_FG$coef, c(7.94604929097243, 8.00272763478668, 15.4934048896756, 12.0089036039556, 12.8506780250522, 5.7074593892259, -1.04515673145053, 0.829932131271245), ignore_attr = TRUE) #7.88878936443855, 8.13813336178581, 14.8891259779366, 12.6461205094352, 10.1178646560904, 8.6203635154537, 9.72765733434199, 0.0780837425347466 }) ## Ensure specific models can't be fit for models with less than four species test_that("Correct number of species are present", { data("sim1") sim1$p5 <- 1 - sim1$p1 sim1$p6 <- 1 - sim1$p1 - sim1$p2 expect_error(DI(data = sim1, y = "response", prop = c("p1", "p5"), DImodel= "E"), "you must have > 2 species to fit model E") expect_error(DI(data = sim1, y = "response", prop = c("p1", "p5"), DImodel= "AV"), "you must have > 2 species to fit model AV") expect_error(DI(data = sim1, y = "response", prop = c("p1", "p5"), DImodel= "FG", FG = c("G", "G")), "you must have > 2 species to fit model FG") expect_error(DI(data = sim1, y = "response", prop = c("p1", "p2", "p6"), DImodel= "ADD"), "you must have > 3 species to fit model ADD") }) ## Richness vs DI works test_that("Richness vs DI works", { data("Switzerland") ## compare the richness model with DI alternatives t1 <- richness_vs_DI(y = "yield", prop = 4:7, data = Switzerland) m1 <- DI(y = "yield", prop = 4:7, data = Switzerland, DImodel = "AV", estimate_theta = TRUE) expect_equal(t1$coefficients, m1$coefficients) ## include the density effects in the linear predictors of the four models t2 <- richness_vs_DI(y = "yield", prop = 4:7, data = Switzerland, extra_formula = ~ density) m2 <- DI(y = "yield", prop = 4:7, data = Switzerland, DImodel = "AV", extra_formula = ~ density, estimate_theta = TRUE) expect_equal(t2$coefficients, m2$coefficients) }) ## S3 methods for class DI (extract, AIC, BIC) test_that("S3 methods work", { data("Switzerland") mod <- DI(y = "yield", prop = 4:7, treat = "nitrogen", FG = c("G", "G", "H", "H"), density = "density", DImodel = "FG", data = Switzerland) # Extract function int_terms <- DI_data(prop = 4:7, data = Switzerland, FG = c("G", "G", "H","H")) int_terms[3:5] <- lapply(int_terms[3:5], as.data.frame) expect_equal(extract(mod), int_terms, ignore_attr = TRUE) # AIC expect_equal(AIC(mod), 260.57313407399) # AICc expect_equal(AICc(mod), 264.43278) # BIC expect_equal(BIC(mod), 282.768211125751) # BICc expect_equal(BICc(mod), 290.911120732231) }) ## Custom formula test_that("Custom formula example", { data("Switzerland") # Basic custom formula mod <- DI(custom_formula = "yield ~ p1 + p2 + p3 + p4", data = Switzerland) lm_ver <- stats::glm(yield ~ p1 + p2 + p3 + p4, data = Switzerland) expect_equal(mod$coef, lm_ver$coef) }) ## Special scenarios which can throw errors test_that("DI fails with appropriate message", { data("sim0") # To suppress rounding error warning sim0$p3 <- 1- sim0$p1 - sim0$p2 # DImodel should be proper expect_error(DI(prop = 3:5, data = sim0, DImodel = "AV1"), regexp = "should be one of") # y can't be missing expect_error(DI(prop = 3:5, data = sim0), regexp = "You must supply a response variable name or column index through the argument 'y'") # Theta can't be negative expect_error(DI(y = "response", prop = 3:5, DImodel = "E", data = sim0, theta = -1), regexp = "Please choose a positive value for theta") # Can't specify both custom and extra formula expect_error(DI(custom_formula = "response ~ p1 + p2 + p3", extra_formula = "~ + p1:p2", data = sim0), regexp = "Please provide either custom_formula or extra_formula; not the two at the same time.") # Can't fit ADD model with 3 species expect_error(DI(y = "response", prop = 3:5, DImodel = "ADD", data = sim0), regexp = "> 3 species") # Can't fit AV and E model with 2 species sim0$p4 <- 1 - sim0$p1 expect_error(DI(y = "response", prop = c("p1", "p4"), DImodel = "AV", data = sim0), regexp = "> 2 species") expect_error(DI(y = "response", prop = c("p1", "p4"), DImodel = "E", data = sim0), regexp = "> 2 species") # FG should be specified when fitting FG model expect_error(DI(y = "response", prop = 3:5, DImodel = "FG", data = sim0), regexp = "The argument FG must be specified alongside DImodel = 'FG'") data("Switzerland") # Can't estimate theta when using custom_formula expect_error(DI(custom_formula = "yield ~ p1 + p2 + p3 + p4", data = Switzerland, estimate_theta = TRUE), regexp = "theta estimation not available when custom_formula is supplied") ## Warnings # Don't specify theta and estimate_theta, estimate_theta takes precedence expect_warning(DI(y = "yield", prop = 4:7, DImodel = "AV", data = Switzerland, theta = 0.5, estimate_theta = TRUE), regexp = "By specifying estimate_theta as TRUE, DI is overriding the specified theta value") # If custom_formula and DImodel both specified custom_formula takes precendence expect_warning(DI(y = "yield", prop = 4:7, DImodel = "FULL", data = Switzerland, custom_formula = "yield ~ p1 + p2"), regexp = "fitting custom DI model using supplied custom_formula instead of model") }) ## Testing for reference model and model comparison along with anovaglm test_that("Interior functions in DI_internal work", { data("Switzerland") mod_no <- DI(y = "yield", prop = 4:7, treat = "nitrogen", FG = c("G", "G", "H", "H"), density = "density", DImodel = "FG", data = Switzerland, estimate_theta = FALSE) # DI_reference and DI_compare expect_equal(DI_reference(mod_no, 4:7, Switzerland), DI_compare(mod_no)) mod <- DI(y = "yield", prop = 4:7, treat = "nitrogen", FG = c("G", "G", "H", "H"), density = "density", DImodel = "FG", data = Switzerland, estimate_theta = TRUE) # DI_reference and DI_compare expect_equal(DI_reference(mod, 4:7, Switzerland, mod$coefficients["theta"]), DI_compare(mod)) # anovaDIglm obj <- anovaDIglm(mod) expect_equal(obj$`Resid. Dev`, c(13310.9015415132, 9103.40986879718, 6326.62608653603, 2402.17197250788, 407.144041330928, 145.443529829053, 140.640221756244, 139.663529974278, 127.40531115179, 127.082707045673), ignore_attr = TRUE) # Rao test obj <- anovaDIglm(mod, test = "Rao") expect_equal(obj$`Rao`, c(NA, 4207.491672716, 2776.78378226115, 3924.45411402815, 1995.02793117695, 261.700511501874, 4.80330807280922, 0.976691781966224, 12.258218822488, 0.322604106116728), ignore_attr = TRUE) ## anova_glmList mod1 <- DI(y = "yield", prop = 4:7, treat = "nitrogen", density = "density", DImodel = "AV", data = Switzerland, estimate_theta = TRUE) mod2 <- DI(y = "yield", prop = 4:7, treat = "nitrogen", density = "density", DImodel = "FULL", data = Switzerland, estimate_theta = TRUE) expect_equal(anova_glmlist(list(mod1, mod, mod2))$Deviance, c(NA, 37.8055122016968, 11.4973620431856)) expect_equal(anova_glmlist(list(mod1, mod, mod2), test = "Rao")$Rao, c(NA, 37.8141225527972, 11.5427716510587)) }) # Test describe_model test_that("describe_model works", { data(sim2) ## Fit model mod_FG <- DI(y = "response", FG = c("G", "G", "L", "L"), prop = 3:6, data = sim2, DImodel = "FG") ## Describe model expect_equal(describe_model(mod_FG), "This model has 4 species with the Functional group interaction structure with FG values of (G, G, L, L).") mod_FULL <- DI(y = "response", estimate_theta = TRUE, prop = 3:6, data = sim2, DImodel = "FULL") expect_equal(describe_model(mod_FULL), "This model has 4 species with the Full pairwise interaction structure. The interaction terms have an associated theta (exponent on the interactions) value of '0.45'.") mod_AV <- DI(y = "response", ID = c("ID1", "ID1", "ID2", "ID2"), estimate_theta = TRUE, prop = 3:6, data = sim2, DImodel = "AV") expect_equal(describe_model(mod_AV), "This model has 4 species with the Average interaction structure. The interaction terms have an associated theta (exponent on the interactions) value of '0.45'.The species identity effects are grouped as (ID1, ID1, ID2, ID2).") mod_STR <- DI(y = "response", FG = c("G", "G", "L", "L"), prop = 3:6, data = sim2, DImodel = "STR") ## Describe model expect_equal(describe_model(mod_STR), "This model doesn't have any species identity or interaction effects and only consists of experimental structures.") mod_CUST <- DI(custom_formula = response ~ block, data = sim2) ## Describe model expect_equal(describe_model(mod_CUST), "This is a custom DI model.") # Proper error is thrown expect_error(describe_model(lm(1 ~ 1)), regexp = "`model` should be regression object of class ") })