test_that("single_glmre2 runs mixed-effects logistic regression correctly", { # Create dummy data set.seed(123) dummy_data <- data.frame( years_education = rnorm(100, 12, 3), gender_female = rbinom(100, 1, 0.5), household_wealth = sample(1:5, 100, replace = TRUE), district_code = sample(1:10, 100, replace = TRUE), HHid = as.character(rep(1:20, each = 5, length.out = 100)) ) # Create a binary outcome variable for years of education dummy_data$education_binary <- ifelse(dummy_data$years_education > 11, 1, 0) # Define a logistic regression formula formula <- education_binary ~ gender_female + household_wealth:gender_female # Run the mixed-effects logistic model for a specific district (suppress warnings) result <- suppressWarnings(single_glmre2(dummy_data, formula, "district_code", "HHid", location_index = 1, family = binomial())) # Test if the result contains the expected columns for estimates and std_error expect_true("estimate" %in% colnames(result)) expect_true("std_error" %in% colnames(result)) # Test if the result contains rows for Marginal and Conditional R-squared expect_true(any(result$term == "Marginal R-squared")) expect_true(any(result$term == "Conditional R-squared")) })