# test da functionality copls.da <- ConsensusOPLS( data=lapply(demo_3_Omics[c("MetaboData", "MicroData", "ProteoData")], scale), Y=demo_3_Omics$Y, maxPcomp=1, maxOcomp=3, nperm=100, modelType="da", mc.cores=1, nfold=14, verbose=T) # test predict pred.da <- predict(copls.da) # predicted Y expect_equal(pred.da$Y[6:9,1], c(HCT15=1.014562172, KM12=0.996538043, NCIADRRES=0.035633998, OVCAR3=-0.003387164), tolerance=1e-7 ) # predicted class expect_equal(pred.da$class$class[6:9], c("Colon", "Colon", "Ovarian", "Ovarian")) expect_equal(pred.da$class$margin[3:5], c(0.8632528, 1.0196975, 1.0395004), tolerance=1e-7) expect_equal(pred.da$class$softmax.Colon[3:5], c(0.9999968, 1, 1), tolerance=1e-7) # test regression functionality copls.reg <- ConsensusOPLS( data=lapply(demo_3_Omics[c("MetaboData", "MicroData", "ProteoData")], scale), Y=matrix(c(rnorm(7, mean=1, sd=0.01), rnorm(7, mean=0, sd=0.01))), maxPcomp=1, maxOcomp=3, nperm=100, modelType="reg", mc.cores=1, kernelParams=list(type = "p", params = c(order = 2)), nfold=3, verbose=T)