R Under development (unstable) (2025-11-23 r89052 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(CondCopulas) > > test_check("CondCopulas") Kendall regression: Λ(𝜏) = β0 + β' phi(z) where 𝜏 is conditional Kendall's tau between X1 and X2 given Z = z Coefficients: Estimate Std. Error z value p-value Intercept -0.77423 0.23047 -3.3593 0.0007815 *** phi1 0.94352 1.26906 0.7435 0.4571900 phi2 0.85264 1.25662 0.6785 0.4974460 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Wald statistics β' V^{-1} β : 49.16084 Test of the simplifying assumption with 2 DF, pvalue: 2.11281e-11 Kendall regression: Λ(𝜏) = β0 + β' phi(z) where 𝜏 is conditional Kendall's tau between X1 and X2 given Z = z Coefficients: Estimate Std. Error z value p-value Intercept 0.00000 0.98676 0.0000 1.0000 phi1 -0.32960 1.21483 -0.2713 0.7861 phi2 0.00000 0.17840 0.0000 1.0000 phi3 0.00000 0.23050 0.0000 1.0000 phi4 0.00000 0.50512 0.0000 1.0000 phi5 -0.12682 0.54794 -0.2315 0.8170 Wald statistics β' V^{-1} β : 0.2821791 Test of the simplifying assumption with 5 DF, pvalue: 0.9979649 h = 0.1 ; truncVal = 0.1 ; T1_CvM_Cs3 = 0.001119759 h = 0.1 ; truncVal = 0.1 ; T1_CvM_Cs4 = 0.00418828 h = 0.1 ; truncVal = 0.1 ; tilde_T0_CvM = 0.001767049 h = 0.1 ; truncVal = 0.1 ; T1_KS_Cs3 = 0.1581602 h = 0.1 ; truncVal = 0.1 ; T1_KS_Cs4 = 0.2491291 h = 0.1 ; truncVal = 0.1 ; tilde_T0_KS = 0.2420898 h = 1 ; truncVal = 0 ; T1_CvM_Cs3 = 2.239345e-05 h = 1 ; truncVal = 0 ; T1_CvM_Cs4 = 0.0001552209 h = 1 ; truncVal = 0 ; tilde_T0_CvM = 4.410946e-05 h = 1 ; truncVal = 0 ; T1_KS_Cs3 = 0.02393074 h = 1 ; truncVal = 0 ; T1_KS_Cs4 = 0.03490315 h = 1 ; truncVal = 0 ; tilde_T0_KS = 0.03415771 h = 0.1 ; truncVal = 0.1 ; T1_CvM_Cs3 = 0.001119759 h = 0.1 ; truncVal = 0.1 ; T1_CvM_Cs4 = 0.00418828 h = 0.1 ; truncVal = 0.1 ; tilde_T0_CvM = 0.001767049 h = 0.1 ; truncVal = 0.1 ; T1_KS_Cs3 = 0.1581602 h = 0.1 ; truncVal = 0.1 ; T1_KS_Cs4 = 0.2491291 h = 0.1 ; truncVal = 0.1 ; tilde_T0_KS = 0.2420898 [ FAIL 0 | WARN 0 | SKIP 0 | PASS 81 ] > > proc.time() user system elapsed 106.48 26.79 133.26