test_that( "Coxph strata_basic_single_CR_null log_bound", { tfile <- file(paste(tempfile(), ".txt",sep="" ),open = "wt") sink(file=tfile) fname <- 'll_comp_0.csv' colTypes <- c( "double", "double", "double", "integer", "integer" ) df <- fread(fname,nThread=min(c(detectCores(),2)),data.table=TRUE,header=TRUE,colClasses=colTypes,verbose=FALSE,fill=TRUE) set.seed(3742) df$rand <- floor(runif(nrow(df), min=0, max=5)) time1 <- "t0" time2 <- "t1" df$censor <- (df$lung==0) event <- "censor" names <- c( "dose", "fac" ) term_n <- c(0,0) tform <- c( "loglin", "loglin" ) keep_constant <- c(1,0) a_n <- c(0,0) modelform <- "M" fir <- 0 der_iden <- 0 control <- list( "ncores"=2, 'lr' = 0.75, 'maxiter' = 20, 'halfmax' = 5, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=0, 'ties'='breslow', 'double_step'=1) plot_options <- list( "name"=paste(tempfile(), "run",sep="" ), "verbose"=FALSE, "studyid"="studyid", "age_unit"="years" ) dft <- GetCensWeight(df, time1, time2, event, names, term_n, tform, keep_constant, a_n, modelform, fir, control, plot_options) # # t_ref <- dft$t surv_ref <- dft$surv t_c <- df$t1 cens_weight <- approx(t_ref, surv_ref, t_c,rule=2)$y df$weighting <- cens_weight # event <- "lung" a_n <- c(-0.1,-0.1) keep_constant <- c(0,0) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(-1,-1), 'halfmax' = 2, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=0, 'ties'='breslow', 'double_step'=1) verbose <- FALSE for (i in c(TRUE, FALSE)){ for (j in c(TRUE, FALSE)){ for (k in c(FALSE, FALSE)){ for (l in c(TRUE, FALSE)){ for (m in c(TRUE, FALSE)){ model_control <- list( 'strata'=i, 'basic'=j, 'single'=k, 'cr'=l, 'log_bound'=TRUE, 'manual'=m) if (verbose){print(model_control)} a_n <- c(-0.1,-0.1) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(1,1), 'halfmax' = 2, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=4, 'ties'='breslow', 'double_step'=1) expect_no_error(RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="rand", model_control=model_control, cens_weight="weighting")) a_n <- c(-0.1,-0.1) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(1,1), 'halfmax' = 2, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=4, 'ties'='efron', 'double_step'=0) expect_no_error(RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="rand", model_control=model_control, cens_weight="weighting")) if (verbose){print( "---------------" )} } } } } } for (m in c(TRUE, FALSE)){ model_control <- list( 'null'=T, 'log_bound'=TRUE, 'manual'=m) if (verbose){print(model_control)} a_n <- c(-0.1,-0.1) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(1,1), 'halfmax' = 2, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=4, 'ties'='breslow', 'double_step'=1) expect_error(RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="rand", model_control=model_control, cens_weight="weighting")) model_control <- list( 'single'=T, 'log_bound'=TRUE, 'manual'=m) expect_error(RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="rand", model_control=model_control, cens_weight="weighting")) } sink(NULL) close(tfile) }) test_that( "Poisson strata_single log_bound", { tfile <- file(paste(tempfile(), ".txt",sep="" ),open = "wt") sink(file=tfile) fname <- 'll_comp_0.csv' colTypes <- c( "double", "double", "double", "integer", "integer" ) df <- fread(fname,nThread=min(c(detectCores(),2)),data.table=TRUE,header=TRUE,colClasses=colTypes,verbose=FALSE,fill=TRUE) set.seed(3742) df$rand <- floor(runif(nrow(df), min=0, max=5)) df$pyr <- df$t1 - df$t0 time1 <- "t0" time2 <- "t1" pyr <- "pyr" df$censor <- (df$lung==0) event <- "censor" names <- c( "dose", "fac" ) term_n <- c(0,0) tform <- c( "loglin", "loglin" ) keep_constant <- c(1,0) a_n <- c(0,0) modelform <- "M" fir <- 0 der_iden <- 0 control <- list( "ncores"=2, 'lr' = 0.75, 'maxiter' = 20, 'halfmax' = 5, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=0, 'ties'='breslow', 'double_step'=1) # event <- "lung" a_n <- c(-0.1,-0.1) keep_constant <- c(0,0) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(-1,-1), 'halfmax' = 2, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=0, 'ties'='breslow', 'double_step'=1) verbose <- FALSE for (i in c(TRUE, FALSE)){ for (k in c(FALSE, FALSE)){ for (m in c(TRUE, FALSE)){ model_control <- list( 'strata'=i, 'single'=k, 'log_bound'=TRUE, 'manual'=m) if (verbose){print(model_control)} a_n <- c(-0.1,-0.1) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(1,1), 'halfmax' = 2, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=4, 'ties'='breslow', 'double_step'=1) expect_no_error(RunPoissonRegression_Omnibus(df,pyr, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="rand", model_control=model_control)) } } } for (m in c(TRUE, FALSE)){ for (k in c(TRUE)){ model_control <- list( 'strata'=F, 'single'=k, 'log_bound'=TRUE, 'manual'=m) if (verbose){print(model_control)} a_n <- c(-0.1,-0.1) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(1,1), 'halfmax' = 2, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=4, 'ties'='breslow', 'double_step'=1) expect_error(RunPoissonRegression_Omnibus(df,pyr, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="rand", model_control=model_control)) } } sink(NULL) close(tfile) }) test_that( "Coxph EPICURE validated answers, loglin", { fname <- 'base_example.csv' df <- fread(fname) time1 <- "entry" time2 <- "exit" event <- "event" names <- c( "dose0", "dose1" ) term_n <- c(0,0) tform <- c( "loglin", "loglin" ) keep_constant <- c(0,0) a_n <- c(0,0) modelform <- "M" fir <- 0 der_iden <- 0 # a_n <- c(-0.6067, 5.019) model_control <- list( 'basic'=TRUE, 'log_bound'=TRUE, 'alpha'=0.1) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(1,1), 'halfmax' = 2, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=0, 'ties'='breslow', 'double_step'=1) v_lower <- c(-0.6305960, -0.6572672, -0.6817293, -0.6929630, -0.7300938, -0.7537744, -0.7749381, -0.8001031, -0.8175117) v_upper <- c(-0.5828725, -0.5562505, -0.5318645, -0.5206756, -0.4837373, -0.4602148, -0.4392159, -0.4142752, -0.3970399) alphas <- c(0.75, 0.5, 1-0.683, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005) for (alpha_i in seq_along(alphas)){ a_n <- c(-0.6067, 5.019) model_control <- list( 'basic'=TRUE, 'log_bound'=TRUE, 'alpha'=alphas[alpha_i], 'para_number'=0) e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="nan", model_control=model_control) a <- e$Parameter_Limits expect_equal(a[1], v_lower[alpha_i],tolerance=1e-4) expect_equal(a[2], v_upper[alpha_i],tolerance=1e-4) } v_lower <- c(4.981497, 4.939337, 4.900838, 4.883211, 4.825191, 4.788380, 4.755608, 4.716794, 4.690041) v_upper <- c(5.057414, 5.100032, 5.139239, 5.157283, 5.217094, 5.255376, 5.289680, 5.330581, 5.358945) for (alpha_i in seq_along(alphas)){ a_n <- c(-0.6067, 5.019) model_control <- list( 'basic'=TRUE, 'log_bound'=TRUE, 'alpha'=alphas[alpha_i], 'para_number'=1) e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="nan", model_control=model_control) a <- e$Parameter_Limits expect_equal(a[1], v_lower[alpha_i],tolerance=1e-4) expect_equal(a[2], v_upper[alpha_i],tolerance=1e-4) } }) test_that( "Coxph EPICURE validated answers, loglin manual", { fname <- 'base_example.csv' df <- fread(fname) time1 <- "entry" time2 <- "exit" event <- "event" names <- c( "dose0", "dose1" ) term_n <- c(0,0) tform <- c( "loglin", "loglin" ) keep_constant <- c(0,0) a_n <- c(0,0) modelform <- "M" fir <- 0 der_iden <- 0 # a_n <- c(-0.6067, 5.019) model_control <- list( 'basic'=TRUE, 'log_bound'=TRUE, 'alpha'=0.1) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(1,1), 'halfmax' = 2, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=0, 'ties'='breslow', 'double_step'=1) v_lower <- c(-0.6305960, -0.6572672, -0.6817293, -0.6929630, -0.7300938, -0.7537744, -0.7749381, -0.8001031, -0.8175117) v_upper <- c(-0.5828725, -0.5562505, -0.5318645, -0.5206756, -0.4837373, -0.4602148, -0.4392159, -0.4142752, -0.3970399) alphas <- c(0.75, 0.5, 1-0.683, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005) for (alpha_i in seq_along(alphas)){ a_n <- c(-0.6067, 5.019) model_control <- list( 'basic'=TRUE, 'log_bound'=TRUE, 'alpha'=alphas[alpha_i], 'para_number'=0, 'manual'=TRUE) e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="nan", model_control=model_control) a <- e$Parameter_Limits expect_equal(a[1], v_lower[alpha_i],tolerance=1e-4) expect_equal(a[2], v_upper[alpha_i],tolerance=1e-4) } v_lower <- c(4.981497, 4.939337, 4.900838, 4.883211, 4.825191, 4.788380, 4.755608, 4.716794, 4.690041) v_upper <- c(5.057414, 5.100032, 5.139239, 5.157283, 5.217094, 5.255376, 5.289680, 5.330581, 5.358945) for (alpha_i in seq_along(alphas)){ a_n <- c(-0.6067, 5.019) model_control <- list( 'basic'=TRUE, 'log_bound'=TRUE, 'alpha'=alphas[alpha_i], 'para_number'=1, 'manual'=TRUE) e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="nan", model_control=model_control) a <- e$Parameter_Limits expect_equal(a[1], v_lower[alpha_i],tolerance=1e-4) expect_equal(a[2], v_upper[alpha_i],tolerance=1e-4) } }) test_that( "Coxph, lin both", { fname <- 'base_example.csv' df <- fread(fname) time1 <- "entry" time2 <- "exit" event <- "event" names <- c( "dose0", "dose1", "dose0" ) term_n <- c(0,0,1) tform <- c( "loglin", "loglin", "lin" ) keep_constant <- c(0,0,0) #a_n <- c(0.2462, 5.020, -0.5909) a_n <- c(0.2462, 5.020,-0.7) modelform <- "M" fir <- 0 der_iden <- 0 # model_control <- list( 'basic'=FALSE, 'maxstep'=100, 'log_bound'=FALSE, 'alpha'=0.1) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(10,10), 'halfmax' = 5, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=3, 'ties'='breslow', 'double_step'=1, 'guesses'=10) alpha <- 0.005 a_n <- c(0.2462, 5.020,-0.599) model_control <- list( 'basic'=FALSE, 'maxstep'=5, 'log_bound'=TRUE, 'alpha'=alpha, 'para_number'=1, 'manual'=FALSE) expect_no_error(RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="nan", model_control=model_control)) a_n <- c(0.2462, 5.020,-0.599) model_control <- list( 'basic'=FALSE, 'maxstep'=5, 'log_bound'=TRUE, 'alpha'=alpha, 'para_number'=1, 'manual'=TRUE) expect_no_error(RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="nan", model_control=model_control)) alpha_list <- c(0.75, 0.5, 1-0.683, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(1,1), 'halfmax' = 2, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=0, 'ties'='breslow', 'double_step'=1, 'guesses'=10) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(10,10), 'halfmax' = 5, 'epsilon' = 1e-4, 'deriv_epsilon' = 1e-3, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=0, 'ties'='breslow', 'double_step'=1, 'guesses'=10) v_lower <- c(4.97252283668956, 4.9349945105648, 4.89804715665926, 4.88084912208962, 4.82369762341988, 4.78721237571926, 4.7546530342797, 4.71603055250556, 4.68938287303871) v_upper <- c(5.06762896572498, 5.10561529697034, 5.14327069556976, 5.16088604918614, 5.21982880792394, 5.2577860471215, 5.29187760184654, 5.33258757872226, 5.36084782852899) for (alpha_i in 1:length(alpha_list)){ alpha <- alpha_list[alpha_i] a_n <- c(0.2462, 5.020,-0.599) model_control <- list( 'basic'=FALSE, 'maxstep'=100, 'log_bound'=TRUE, 'alpha'=alpha, 'para_number'=1, 'manual'=TRUE) e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="nan", model_control=model_control) a <- e$Parameter_Limits expect_equal(a[1], v_lower[alpha_i],tolerance=1e-4) expect_equal(a[2], v_upper[alpha_i],tolerance=1e-4) } v_lower <- c(-0.643365949558998, -0.677336655540846, -0.706075250211414, -0.718165409196492, -0.753647332793819, -0.773208334303991, -0.789018704115451, -0.806061085000755, -0.816875114954096) v_upper <- c(-0.521472203247917, -0.444964438813732, -0.327862977142017, -0.235044092073815, 2.91573713669059, 3.21014641617297, 3.48490803194128, 3.82648584413642, 4.07272009904963) for (alpha_i in 1:length(alpha_list)){ alpha <- alpha_list[alpha_i] a_n <- c(0.2462, 5.020,-0.599) model_control <- list( 'basic'=FALSE, 'maxstep'=100, 'log_bound'=TRUE, 'alpha'=alpha, 'para_number'=2, 'manual'=TRUE) e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="nan", model_control=model_control) a <- e$Parameter_Limits expect_equal(a[1], v_lower[alpha_i],tolerance=1e-4) expect_equal(a[2], v_upper[alpha_i],tolerance=1e-4) } }) test_that( "Poisson, lin both", { fname <- 'base_example.csv' df <- fread(fname) pyr <- "exit" event <- "event" names <- c( "dose0", "dose1" ) term_n <- c(0,1) tform <- c( "loglin", "lin" ) keep_constant <- c(0,0) a_n <- c(-2.917, 0.06526) modelform <- "M" fir <- 0 der_iden <- 0 # model_control <- list( 'basic'=FALSE, 'maxstep'=100, 'log_bound'=FALSE, 'alpha'=0.1) control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(10,10), 'halfmax' = 5, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=3, 'ties'='breslow', 'double_step'=1, 'guesses'=10) alpha <- 0.005 a_n <- c(-2.917, 0.06526) model_control <- list( 'basic'=FALSE, 'maxstep'=5, 'log_bound'=TRUE, 'alpha'=alpha, 'para_number'=1, 'manual'=FALSE) expect_no_error(RunPoissonRegression_Omnibus(df,pyr, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="rand", model_control=model_control)) a_n <- c(-2.917, 0.06526) model_control <- list( 'basic'=FALSE, 'maxstep'=5, 'log_bound'=TRUE, 'alpha'=alpha, 'para_number'=1, 'manual'=TRUE) expect_no_error(RunPoissonRegression_Omnibus(df,pyr, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="rand", model_control=model_control)) # alpha_list <- c(0.75, 0.5, 1-0.683, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005) # control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(1,1), 'halfmax' = 2, 'epsilon' = 1e-6, 'deriv_epsilon' = 1e-6, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=0, 'ties'='breslow', 'double_step'=1, 'guesses'=10) # control <- list( "ncores"=2, 'lr' = 0.75, 'maxiters' = c(10,10), 'halfmax' = 5, 'epsilon' = 1e-4, 'deriv_epsilon' = 1e-3, 'abs_max'=1.0, 'change_all'=TRUE, 'dose_abs_max'=100.0, 'verbose'=0, 'ties'='breslow', 'double_step'=1, 'guesses'=10) # v_lower <- c(4.97252283668956, 4.9349945105648, 4.89804715665926, 4.88084912208962, 4.82369762341988, 4.78721237571926, 4.7546530342797, 4.71603055250556, 4.68938287303871) # v_upper <- c(5.06762896572498, 5.10561529697034, 5.14327069556976, 5.16088604918614, 5.21982880792394, 5.2577860471215, 5.29187760184654, 5.33258757872226, 5.36084782852899) # for (alpha_i in 1:length(alpha_list)){ # alpha <- alpha_list[alpha_i] # a_n <- c(0.2462, 5.020,-0.599) # model_control <- list( 'basic'=FALSE, 'maxstep'=100, 'log_bound'=TRUE, 'alpha'=alpha, 'para_number'=1, 'manual'=TRUE) # e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="nan", model_control=model_control) # a <- e$Parameter_Limits # expect_equal(a[1], v_lower[alpha_i],tolerance=1e-4) # expect_equal(a[2], v_upper[alpha_i],tolerance=1e-4) # } # v_lower <- c(-0.643365949558998, -0.677336655540846, -0.706075250211414, -0.718165409196492, -0.753647332793819, -0.773208334303991, -0.789018704115451, -0.806061085000755, -0.816875114954096) # v_upper <- c(-0.521472203247917, -0.444964438813732, -0.327862977142017, -0.235044092073815, 2.91573713669059, 3.21014641617297, 3.48490803194128, 3.82648584413642, 4.07272009904963) # for (alpha_i in 1:length(alpha_list)){ # alpha <- alpha_list[alpha_i] # a_n <- c(0.2462, 5.020,-0.599) # model_control <- list( 'basic'=FALSE, 'maxstep'=100, 'log_bound'=TRUE, 'alpha'=alpha, 'para_number'=2, 'manual'=TRUE) # e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n=term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,strat_col="nan", model_control=model_control) # a <- e$Parameter_Limits # expect_equal(a[1], v_lower[alpha_i],tolerance=1e-4) # expect_equal(a[2], v_upper[alpha_i],tolerance=1e-4) # } })