test_that("Coxph strata_basic_single_null", { fname <- 'll_0.csv' colTypes=c("double","double","double","integer","integer") df <- fread(fname,nThread=min(c(detectCores(),2)),data.table=TRUE,header=TRUE,colClasses=colTypes,verbose=FALSE,fill=TRUE) time1 <- "t0" time2 <- "t1" event <- "lung" names <- c("dose") Term_n <- c(0) tform <- c("loglin") keep_constant <- c(0) a_n <- c(0.01) modelform <- "M" fir <- 0 der_iden <- 0 verbose <- FALSE control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 1,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=TRUE, 'ties'='breslow','double_step'=1) for (i in c(TRUE,FALSE)){ for (j in c(TRUE,FALSE)){ for (k in c(TRUE,FALSE)){ for (l in c(TRUE,FALSE)){ model_control=list('strata'=i, 'basic'=j, 'single'=k, 'null'=l) if (verbose){print(model_control)} a_n <- c(0.01) expect_no_error(RunCoxRegression_Omnibus(df, time1, time2, event, names, Term_n=Term_n, tform=c("loglin"), keep_constant=keep_constant, a_n=a_n, modelform="M", fir=0, der_iden=der_iden, control=control,Strat_Col="fac", model_control=model_control)) if (verbose){print("---------------")} } } } } }) test_that("Coxph basic_single_null match", { fname <- 'll_0.csv' colTypes=c("double","double","double","integer","integer") df <- fread(fname,nThread=min(c(detectCores(),2)),data.table=TRUE,header=TRUE,colClasses=colTypes,verbose=FALSE,fill=TRUE) time1 <- "t0" time2 <- "t1" event <- "lung" names <- c("dose") Term_n <- c(0) tform <- c("loglin") keep_constant <- c(0) a_n <- c(0.0) modelform <- "M" fir <- 0 der_iden <- 0 verbose <- FALSE control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(-1,-1),'halfmax' = -1,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=TRUE, 'ties'='breslow','double_step'=1) model_control=list('strata'=FALSE, 'basic'=FALSE, 'single'=FALSE, 'null'=FALSE) e0 <- RunCoxRegression_Omnibus(df, time1, time2, event, names, Term_n=Term_n, tform=c("loglin"), keep_constant=keep_constant, a_n=a_n, modelform="M", fir=0, der_iden=der_iden, control=control,Strat_Col="fac", model_control=model_control) for (j in c(TRUE,FALSE)){ for (k in c(TRUE,FALSE)){ for (l in c(TRUE,FALSE)){ model_control=list('strata'=FALSE, 'basic'=j, 'single'=k, 'null'=l) if (verbose){print(model_control)} a_n <- c(0.0) e1 <- RunCoxRegression_Omnibus(df, time1, time2, event, names, Term_n=Term_n, tform=c("loglin"), keep_constant=keep_constant, a_n=a_n, modelform="M", fir=0, der_iden=der_iden, control=control,Strat_Col="fac", model_control=model_control) expect_equal(e0$LogLik,e1$LogLik,tolerance=1e-2) if (verbose){print("---------------")} } } } }) test_that("Coxph strata_basic_single_CR", { fname <- 'll_comp_0.csv' colTypes=c("double","double","double","integer","integer") df <- fread(fname,nThread=min(c(detectCores(),2)),data.table=TRUE,header=TRUE,colClasses=colTypes,verbose=FALSE,fill=TRUE) df$rand <- floor(runif(nrow(df), min=0, max=5)) time1 <- "t0" time2 <- "t1" df$censor <- (df$lung==0) event <- "censor" names <- c("dose","fac") Term_n <- c(0,0) tform <- c("loglin","loglin") keep_constant <- c(1,0) a_n <- c(0,0) modelform <- "M" fir <- 0 der_iden <- 0 control=list("Ncores"=2,'lr' = 0.75,'maxiter' = 20,'halfmax' = 5,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=TRUE, 'ties'='breslow','double_step'=1) plot_options <- list("name"=paste(tempfile(),"run",sep=""),"verbose"=FALSE,"studyID"="studyID","age_unit"="years") dft <- GetCensWeight(df, time1, time2, event, names, Term_n, tform, keep_constant, a_n, modelform, fir, control, plot_options) # # t_ref <- dft$t surv_ref <- dft$surv t_c <- df$t1 cens_weight <- approx(t_ref, surv_ref, t_c,rule=2)$y # event <- "lung" a_n <- c(-0.1,-0.1) keep_constant <- c(0,0) control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=TRUE, 'ties'='breslow','double_step'=1) verbose <- FALSE for (i in c(TRUE,FALSE)){ for (j in c(TRUE,FALSE)){ for (k in c(TRUE,FALSE)){ for (l in c(TRUE,FALSE)){ model_control=list('strata'=i, 'basic'=j, 'single'=k, 'CR'=l) if (verbose){print(model_control)} a_n <- c(-0.1,-0.1) control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=TRUE, 'ties'='breslow','double_step'=1) expect_no_error(RunCoxRegression_Omnibus(df, time1, time2, event, names, Term_n=Term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,Strat_Col="rand", model_control=model_control, cens_weight=cens_weight)) a_n <- c(-0.1,-0.1) control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=TRUE, 'ties'='efron','double_step'=0) expect_no_error(RunCoxRegression_Omnibus(df, time1, time2, event, names, Term_n=Term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,Strat_Col="rand", model_control=model_control, cens_weight=cens_weight)) if (verbose){print("---------------")} } } } } }) test_that("Pois strata_single", { fname <- 'll_0.csv' colTypes=c("double","double","double","integer","integer") df <- fread(fname,nThread=min(c(detectCores(),2)),data.table=TRUE,header=TRUE,colClasses=colTypes,verbose=FALSE,fill=TRUE) time1 <- "t0" df$pyr <- df$t1-df$t0 pyr <- "pyr" event <- "lung" df$rand <- floor(runif(nrow(df), min=0, max=5)) names <- c("dose","rand","rand") Term_n <- c(2,1,0) tform <- c("loglin","loglin","loglin") keep_constant <- c(0,0,0) a_n <- c(0.01,0.1,0.1) modelform <- "PAE" fir <- 0 der_iden <- 0 control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 5,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=TRUE, 'ties'='breslow','double_step'=0) Strat_Col <- "fac" verbose <- FALSE for (i in c(TRUE,FALSE)){ for (j in c(TRUE,FALSE)){ model_control=list('strata'=i, 'single'=j) if (verbose){print(model_control)} a_n <- c(0.01,0.1,0.1) modelform <- "PAE" expect_no_error(RunPoissonRegression_Omnibus(df, pyr, event, names, Term_n, tform, keep_constant, a_n, modelform, fir, der_iden, control,Strat_Col,model_control)) a_n <- c(0.01,0.1,0.1) modelform <- "A" expect_no_error(RunPoissonRegression_Omnibus(df, pyr, event, names, Term_n, tform, keep_constant, a_n, modelform, fir, der_iden, control,Strat_Col,model_control)) if (verbose){print("---------------")} } } }) test_that("risk check omnibus plain", { fname <- 'll_comp_0.csv' colTypes=c("double","double","double","integer","integer") df <- fread(fname,nThread=min(c(detectCores(),2)),data.table=TRUE,header=TRUE,colClasses=colTypes,verbose=FALSE,fill=TRUE) set.seed(3742) df$rand <- floor(runif(nrow(df), min=0, max=5)) time1 <- "t0" time2 <- "t1" df$censor <- (df$lung==0) # event <- "lung" names <- c("dose","fac","dose","fac","rand") Term_n <- c(0,0,1,1,1) tform <- c("loglin","lin","lin","plin","loglin") keep_constant <- c(0,0,0,0,0) a_n <- c(-0.1,0.1,0.2,0.3,-0.5) modelform <- "M" fir <- 0 der_iden <- 0 cens_weight <- c(0) control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1) verbose <- FALSE df_order <- data.table("Term_n"=Term_n, "tform"=tform, "keep_constant"=keep_constant, "a_n"=a_n, "names"=names, "order"=1:5) model_list <- c('M','A','PA','PAE') means <- c(0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.186140663450931, 0.186140663450931, 0.186140663450931, 0.186140663450931, 0.186140663450931, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.186140663450931, 0.186140663450931, 0.186140663450931, 0.186140663450931, 0.186140663450931, 0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.186140663450931, 0.186140663450931, 0.186140663450931, 0.186140663450931, 0.186140663450931, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.223545565747452, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0079328174864236, 0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.0532705372693687, 0.186140663450931, 0.186140663450931, 0.186140663450931, 0.186140663450931, 0.186140663450931) medians <- c(0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.112941187026932, 0.112941187026932, 0.112941187026932, 0.112941187026932, 0.112941187026932, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.112941187026932, 0.112941187026932, 0.112941187026932, 0.112941187026932, 0.112941187026932, 0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.112941187026932, 0.112941187026932, 0.112941187026932, 0.112941187026932, 0.112941187026932, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0.155704743824735, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.0822977918796923, 0.112941187026932, 0.112941187026932, 0.112941187026932, 0.112941187026932, 0.112941187026932) sums <- c(53.2705372693687, 53.2705372693687, 53.2705372693687, 53.2705372693687, 53.2705372693687, 186.140663450931, 186.140663450931, 186.140663450931, 186.140663450931, 186.140663450931, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 53.2705372693687, 53.2705372693687, 53.2705372693687, 53.2705372693687, 53.2705372693687, 186.140663450931, 186.140663450931, 186.140663450931, 186.140663450931, 186.140663450931, 53.2705372693687, 53.2705372693687, 53.2705372693687, 53.2705372693687, 53.2705372693687, 186.140663450931, 186.140663450931, 186.140663450931, 186.140663450931, 186.140663450931, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 223.545565747452, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 7.9328174864236, 53.2705372693687, 53.2705372693687, 53.2705372693687, 53.2705372693687, 53.2705372693687, 186.140663450931, 186.140663450931, 186.140663450931, 186.140663450931, 186.140663450931) for (model_i in 1:4){ modelform <- model_list[model_i] for (fir in c(0,1)){ for(i in 1:5){ model_control=list('strata'=FALSE, 'basic'=FALSE, 'single'=FALSE, 'CR'=FALSE) # df_order$order <- sample(df_order$order) setorderv(df_order, c("order")) Term_n <- df_order$Term_n tform <- df_order$tform keep_constant <- df_order$keep_constant a_n <- df_order$a_n names <- df_order$names # control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1) e <- Cox_Relative_Risk(df, time1, time2, event, names, Term_n=Term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, control=control, model_control=model_control)$Risk a_i <- (model_i-1)*10 + fir*5 + i expect_equal(mean(e),means[a_i],tolerance=1e-2) expect_equal(median(e),medians[a_i],tolerance=1e-2) expect_equal(sum(e),sums[a_i],tolerance=1e-2) } } } }) test_that("risk check omnibus gmix", { fname <- 'll_comp_0.csv' colTypes=c("double","double","double","integer","integer") df <- fread(fname,nThread=min(c(detectCores(),2)),data.table=TRUE,header=TRUE,colClasses=colTypes,verbose=FALSE,fill=TRUE) set.seed(3742) df$rand <- floor(runif(nrow(df), min=0, max=5)) time1 <- "t0" time2 <- "t1" df$censor <- (df$lung==0) # event <- "lung" control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1) verbose <- FALSE model_list <- c('GMIX-R','GMIX-E','GMIX') names <- c("dose","fac","dose","fac","rand") Term_n <- c(0,0,1,1,2) tform <- c("loglin","loglin","plin","plin","loglin") keep_constant <- c(0,0,0,0,0) a_n <- c(-0.1,0.1,0.2,0.3,-0.5) df_order <- data.table("Term_n"=Term_n, "tform"=tform, "keep_constant"=keep_constant, "a_n"=a_n, "names"=names, "order"=1:5) means <- c(0.6918334,0.6918334,0.6918334,2.9080098,3.8839872,2.7077608,0.6918334,1.2728663,1.8214142,2.9080098,0.6918334,1.4807626,1.8214142,3.8839872,0.6918334,1.4807626,1.2728663,2.7077608) medians <- c(0.5871897,0.5871897,0.5871897,2.8144283,3.7521540,2.4285966,0.5871897,1.0226682,1.7472830,2.8144283,0.5871897,1.2200643,1.7472830,3.7521540,0.5871897,1.2200643,1.0226682,2.4285966) sums <- c(691.8334,691.8334,691.8334,2908.0098,3883.9872,2707.7608,691.8334,1272.8663,1821.4142,2908.0098,691.8334,1480.7626,1821.4142,3883.9872,691.8334,1480.7626,1272.8663,2707.7608) count <- 0 for (model_i in 1:3){ modelform <- model_list[model_i] if (modelform=='GMIX'){ for (fir in c(0,1,2)){ for (term_i in 0:3){ model_control=list('strata'=FALSE, 'basic'=FALSE, 'single'=FALSE, 'CR'=FALSE) if (fir==0){ model_control$gmix_term <- c(0,term_i%%2, floor(term_i/2)) } else if (fir==1){ model_control$gmix_term <- c(term_i%%2,0, floor(term_i/2)) } else if (fir==2){ model_control$gmix_term <- c(term_i%%2, floor(term_i/2),1) } # df_order$order <- sample(df_order$order) setorderv(df_order, c("order")) Term_n <- df_order$Term_n tform <- df_order$tform keep_constant <- df_order$keep_constant a_n <- df_order$a_n names <- df_order$names # control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1) e <- Cox_Relative_Risk(df, time1, time2, event, names, Term_n=Term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, control=control, model_control=model_control)$Risk count <- count + 1 expect_equal(mean(e),means[count],tolerance=1e-2) expect_equal(median(e),medians[count],tolerance=1e-2) expect_equal(sum(e),sums[count],tolerance=1e-2) } } } else { for (fir in c(0,1,2)){ model_control=list('strata'=FALSE, 'basic'=FALSE, 'single'=FALSE, 'CR'=FALSE) # df_order$order <- sample(df_order$order) setorderv(df_order, c("order")) Term_n <- df_order$Term_n tform <- df_order$tform keep_constant <- df_order$keep_constant a_n <- df_order$a_n names <- df_order$names # control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1) e <- Cox_Relative_Risk(df, time1, time2, event, names, Term_n=Term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, control=control, model_control=model_control)$Risk count <- count + 1 expect_equal(mean(e),means[count],tolerance=1e-2) expect_equal(median(e),medians[count],tolerance=1e-2) expect_equal(sum(e),sums[count],tolerance=1e-2) } } } }) test_that("risk check omnibus dose", { fname <- 'll_comp_0.csv' colTypes=c("double","double","double","integer","integer") df <- fread(fname,nThread=min(c(detectCores(),2)),data.table=TRUE,header=TRUE,colClasses=colTypes,verbose=FALSE,fill=TRUE) set.seed(3742) df$rand <- floor(runif(nrow(df), min=0, max=5)) time1 <- "t0" time2 <- "t1" df$censor <- (df$lung==0) # event <- "lung" names <- c("dose","fac","dose","fac","rand") Term_n <- c(0,0,1,1,1) tform <- c("loglin","lin","lin","plin","loglin") keep_constant <- c(0,0,0,0,0) a_n <- c(-0.1,0.1,0.2,0.3,-0.5) modelform <- "M" fir <- 0 der_iden <- 0 cens_weight <- c(0) control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1) verbose <- FALSE df_order <- data.table("Term_n"=Term_n, "tform"=tform, "keep_constant"=keep_constant, "a_n"=a_n, "names"=names, "order"=1:5) model_list <- c('M','A','PA','PAE') names <- c("dose","dose","dose","dose","dose","dose","dose","dose","dose","dose","dose", "fac","fac","fac","fac","fac","fac","fac","fac","fac","fac","fac") Term_n <- c(0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1) tform <- c("loglin_top","lin_slope","lin_int","quad_slope","step_slope","step_int","lin_quad_slope","lin_quad_int","lin_exp_slope","lin_exp_int","lin_exp_exp_slope","loglin_top","lin_slope","lin_int","quad_slope","step_slope","step_int","lin_quad_slope","lin_quad_int","lin_exp_slope","lin_exp_int","lin_exp_exp_slope") keep_constant <- c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) a_n <- c(-0.1 ,-0.1 ,1 ,-0.1 ,1 ,2 ,0.3 ,1.5 ,0.2 ,0.7 ,1, -0.1 ,-0.1 ,1 ,-0.1 ,1 ,2 ,0.3 ,1.5 ,0.2 ,0.7 ,1) df_order <- data.table("Term_n"=Term_n, "tform"=tform, "keep_constant"=keep_constant, "a_n"=a_n, "names"=names, "order"=1:22) means <- c(3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 2.67297456164882, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 1.75338940554459, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 3.26883019325272, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529, 2.91092317948529) medians <- c(2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 2.55867858245872, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 1.6364085377938, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.89841334635291, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858, 2.90408823467858) sums <- c(3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 2672.97456164882, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 1753.38940554459, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 3268.83019325272, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529, 2910.92317948529) for (model_i in 1:4){ modelform <- model_list[model_i] for (fir in c(0,1)){ for(i in 1:22){ model_control=list('strata'=FALSE, 'basic'=FALSE, 'single'=FALSE, 'CR'=FALSE) # df_order$order <- sample(df_order$order) setorderv(df_order, c("order")) Term_n <- df_order$Term_n tform <- df_order$tform keep_constant <- df_order$keep_constant a_n <- df_order$a_n names <- df_order$names # control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1) e <- Cox_Relative_Risk(df, time1, time2, event, names, Term_n=Term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, control=control, model_control=model_control)$Risk a_i <- (model_i-1)*44 + fir*22 + i expect_equal(mean(e),means[a_i],tolerance=1e-2) expect_equal(median(e),medians[a_i],tolerance=1e-2) expect_equal(sum(e),sums[a_i],tolerance=1e-2) } } } }) test_that("check deviation calc", { fname <- 'll_comp_0.csv' colTypes=c("double","double","double","integer","integer") df <- fread(fname,nThread=min(c(detectCores(),2)),data.table=TRUE,header=TRUE,colClasses=colTypes,verbose=FALSE,fill=TRUE) set.seed(3742) df$rand <- floor(runif(nrow(df), min=0, max=5)) time1 <- "t0" time2 <- "t1" # event <- "lung" names <- c("dose","fac","rand") Term_n <- c(0,0,1) tform <- c("loglin","loglin","loglin") keep_constant <- c(0,0,0) a_n <- c(-0.1,0.1,0.2) modelform <- "M" fir <- 0 der_iden <- 0 cens_weight <- c(0) verbose <- FALSE devs <- c() modelform <- "M" model_control=list('strata'=FALSE, 'basic'=FALSE, 'single'=FALSE, 'CR'=FALSE) for (i in 1:3){ a_n <- c(0.6465390, 0.4260961, 0.1572781) keep_constant <- c(0,0,0) keep_constant[i] <- 1 # control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1) e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, Term_n=Term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,Strat_Col="fac", model_control=model_control) devs <- c(devs, sum(e$Standard_Deviation)) } a_n <- c(0.6465390, 0.4260961, 0.1572781) keep_constant <- c(0,0,0) # control=list("Ncores"=2,'lr' = 0.75,'maxiters' = c(1,1),'halfmax' = 2,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1) e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, Term_n=Term_n, tform=tform, keep_constant=keep_constant, a_n=a_n, modelform=modelform, fir=fir, der_iden=der_iden, control=control,Strat_Col="fac", model_control=model_control) devs <- c(devs, sum(e$Standard_Deviation)) expect_equal(devs,c(0.6091269, 0.5356671, 0.7385757, 0.9448081),tolerance=1e-4) }) test_that("check Linear Constraints", { fname <- 'l_pl_0.csv' colTypes=c("double","double","double","integer","integer") df <- fread(fname,nThread=min(c(detectCores(),2)),data.table=TRUE,header=TRUE,colClasses=colTypes,verbose=FALSE,fill=TRUE) df$pyr <- df$t1 - df$t0 time1 <- "t0" time2 <- "t1" pyr <- 'pyr' event <- "lung" names <- c("dose","fac") Term_n <- c(0,0) tform <- c("loglin","plin") keep_constant <- c(0,0) model_control=list('strata'=F, 'basic'=F, 'single'=F, 'null'=F,'constraint'=T) Constraint_Matrix <- matrix(c(1,-1),nrow=1) Constraint_const <- c(0.0) for (i in 1:20){ a_n <- 2*runif(2)-1 del <- abs(a_n[1]-a_n[2]) a_n0 <- rep(sum(a_n)/2,2) a_n <- a_n0 - c(-del/2,del/2) modelform <- "M" fir <- 0 der_iden <- 0 control=list("Ncores"=2,'lr' = 0.75,'maxiter' = 20,'halfmax' = 5,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1) e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, Term_n, tform, keep_constant, a_n, modelform, fir, der_iden, control,Strat_Col="fac", model_control=model_control,Cons_Mat=Constraint_Matrix, Cons_Vec=Constraint_const) expect_equal(e$beta_0,c(0.357333, 0.357333),tolerance=1e-2) } for (i in 1:20){ a_n <- 2*runif(2)-1 del <- abs(a_n[1]-a_n[2]) a_n0 <- rep(sum(a_n)/2,2) a_n <- a_n0 + c(-del/2,del/2) modelform <- "M" fir <- 0 der_iden <- 0 control=list("Ncores"=2,'lr' = 0.75,'maxiter' = 20,'halfmax' = 5,'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6, 'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1) e <- RunPoissonRegression_Omnibus(df, pyr, event, names, Term_n, tform, keep_constant, a_n, modelform, fir, der_iden, control,Strat_Col="fac",model_control=model_control,Cons_Mat=Constraint_Matrix, Cons_Vec=Constraint_const) expect_equal(e$beta_0,c(-0.472812, -0.472812),tolerance=1e-2) } })