Inference for Bugs model at "modelBPBM.txt", fit using jags,
 3 chains, each with 2000 iterations (first 1000 discarded), n.thin = 10
 n.sims = 300 iterations saved
             mu.vect sd.vect    2.5%     25%     50%     75%   97.5%  Rhat
a[1,1]         1.809   0.571   0.629   1.456   1.849   2.246   2.771 1.005
a[2,1]         1.525   0.578   0.384   1.117   1.588   1.986   2.452 1.017
a[3,1]        -0.121   0.459  -1.103  -0.403  -0.048   0.121   0.746 1.010
a[4,1]         1.396   0.608   0.132   1.015   1.463   1.840   2.412 1.004
a[5,1]         1.615   0.587   0.445   1.199   1.625   2.058   2.568 1.019
a[1,2]        -0.135   0.604  -1.375  -0.465  -0.083   0.165   1.141 1.017
a[2,2]         0.183   0.571  -1.022  -0.119   0.132   0.514   1.299 1.007
a[3,2]         0.317   0.647  -0.953  -0.097   0.264   0.752   1.562 1.058
a[4,2]         0.115   0.675  -1.336  -0.259   0.087   0.455   1.510 0.998
a[5,2]        -0.325   0.742  -2.104  -0.607  -0.218   0.091   0.987 1.004
a[1,3]        -0.238   1.011  -2.171  -0.761  -0.240   0.238   1.894 1.076
a[2,3]         1.360   1.128  -0.454   0.542   1.236   2.000   4.134 1.023
a[3,3]         0.219   1.134  -2.097  -0.358   0.058   0.776   2.762 1.001
a[4,3]        -0.086   1.016  -2.098  -0.528  -0.075   0.395   2.230 1.033
a[5,3]         0.593   1.053  -1.122  -0.065   0.406   1.169   3.121 1.091
sdgamma[1,1]   2.624   1.164   0.760   1.746   2.468   3.437   4.837 1.003
sdgamma[2,1]   2.636   1.258   0.663   1.537   2.525   3.656   4.916 0.998
sdgamma[3,1]   1.450   1.364   0.054   0.388   0.890   2.254   4.477 0.998
sdgamma[4,1]   2.495   1.255   0.509   1.448   2.367   3.505   4.815 1.000
sdgamma[5,1]   2.690   1.241   0.566   1.770   2.529   3.711   4.907 1.002
sdgamma[1,2]   1.594   1.359   0.072   0.460   1.116   2.464   4.805 0.997
sdgamma[2,2]   1.715   1.338   0.115   0.579   1.301   2.542   4.700 1.005
sdgamma[3,2]   1.804   1.292   0.069   0.734   1.531   2.723   4.650 1.006
sdgamma[4,2]   1.714   1.333   0.068   0.571   1.398   2.520   4.577 1.054
sdgamma[5,2]   1.763   1.373   0.083   0.599   1.402   2.692   4.541 1.006
sdgamma[1,3]   1.954   1.356   0.039   0.755   1.809   2.947   4.637 1.005
sdgamma[2,3]   2.421   1.349   0.284   1.331   2.204   3.588   4.795 1.025
sdgamma[3,3]   2.039   1.363   0.087   0.914   1.860   3.091   4.718 1.014
sdgamma[4,3]   1.629   1.321   0.073   0.551   1.227   2.463   4.553 1.002
sdgamma[5,3]   2.131   1.450   0.099   0.828   1.890   3.239   4.868 1.004
deviance     -57.393   7.528 -69.966 -63.022 -58.038 -52.114 -42.156 0.999
             n.eff
a[1,1]         240
a[2,1]         290
a[3,1]         300
a[4,1]         300
a[5,1]         110
a[1,2]         140
a[2,2]         190
a[3,2]          37
a[4,2]         300
a[5,2]         300
a[1,3]          38
a[2,3]         110
a[3,3]         300
a[4,3]         170
a[5,3]          34
sdgamma[1,1]   300
sdgamma[2,1]   300
sdgamma[3,1]   300
sdgamma[4,1]   300
sdgamma[5,1]   300
sdgamma[1,2]   300
sdgamma[2,2]   290
sdgamma[3,2]   300
sdgamma[4,2]   110
sdgamma[5,2]   300
sdgamma[1,3]   300
sdgamma[2,3]   120
sdgamma[3,3]   150
sdgamma[4,3]   300
sdgamma[5,3]   300
deviance       300

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 28.5 and DIC = -28.9
DIC is an estimate of expected predictive error (lower deviance is better).