library(fpc) set.seed(20000) face <- rFace(50,dMoNo=2,dNoEy=0,p=2) test_that("kmeanCBI", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, clustermethod=kmeansCBI, k=5), "clusboot") }) test_that("additional arguments", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, clustermethod=kmeansCBI, k=5, algorithm="MacQueen"), "clusboot") }) test_that("distance input", { expect_s3_class(clusboot(dist(face), B=50, clustering.func=fpc.clusterboot, clustermethod=kmeansCBI, k=5), "clusboot") }) test_that("hclustCBI", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, clustermethod=hclustCBI, k=2, method="complete"), "clusboot") }) test_that("hclusttreeCBI", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, clustermethod=hclusttreeCBI, k=2, method="single"), "clusboot") }) test_that("disthclustCBI", { expect_s3_class(clusboot(dist(face), B=50, clustering.func=fpc.clusterboot, clustermethod=disthclustCBI, k=2, method="ward.D"), "clusboot") }) test_that("noisemclustCBI", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, clustermethod=noisemclustCBI, k=2, multipleboot=FALSE), "clusboot") }) test_that("distnoisemclustCBI", { expect_s3_class(clusboot(dist(face), B=50, clustering.func=fpc.clusterboot, clustermethod=noisemclustCBI, k=5, multipleboot=FALSE), "clusboot") }) test_that("claraCBI", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, clustermethod=claraCBI, k=5), "clusboot") }) test_that("pamkCBI", { expect_s3_class(clusboot(dist(face), B=50, clustering.func=fpc.clusterboot, clustermethod=pamkCBI), "clusboot") }) test_that("dbscanCBI", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, clustermethod=dbscanCBI, eps=1e-5, MinPts=5), "clusboot") }) test_that("mahalCBI", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, clustermethod=mahalCBI), "clusboot") }) test_that("mergenormCBI", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, clustermethod=mergenormCBI, G=10, modelNames="EEE",nnk=2), "clusboot") }) test_that("bootmethod=subset", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, bootmethod="subset", clustermethod=claraCBI, k=5), "clusboot") }) test_that("bootmethod=subset with dist", { expect_s3_class(clusboot(dist(face), B=50, clustering.func=fpc.clusterboot, bootmethod="subset", clustermethod=claraCBI, k=5), "clusboot") }) test_that("bootmethod=noise", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, bootmethod="noise", clustermethod=claraCBI, k=5), "clusboot") }) test_that("bootmethod=jitter", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, bootmethod="jitter", clustermethod=claraCBI, k=5), "clusboot") }) test_that("bootmethod=bojit", { expect_s3_class(clusboot(face, B=50, clustering.func=fpc.clusterboot, bootmethod="bojit", clustermethod=claraCBI, k=5), "clusboot") })