# Test for modify_Observation test_that("modify_Observation correctly modifies an Observation", { # Create a sample PMLParametersSets PMLParametersSets <- create_ModelPK() # Modify an Observation modified_sets <- modify_Observation( PMLParametersSets, ObservationName = "CObs", SigmasChosen = Sigmas( Proportional = 0, AdditiveMultiplicative = list(PropPart = 0.1, AddPart = 10) ) ) # Check if the modification was successful expect_identical( modified_sets$PK1IVC$Observations$CObs, Observation( ObservationName = "CObs", SigmasChosen = Sigmas( Proportional = 0, AdditiveMultiplicative = list(PropPart = 0.1, AddPart = 10) ), PMLStructure = "PK1IVC" ) ) expect_warning(modify_Observation( PMLParametersSets, ObservationName = "AObs", SigmasChosen = Sigmas( Proportional = 1 ) )) PMLParametersSets <- create_ModelPK(EliminationCpt = c(FALSE, TRUE)) expect_warning(modify_Observation( PMLParametersSets, ObservationName = "A0Obs", SigmasChosen = Sigmas( Proportional = 1 ), PMLStructures = "PK1IVC" )) }) # Test for remove_Observation test_that("remove_Observation correctly removes an Observation", { # Create a sample PMLParametersSets PMLParametersSets <- create_ModelPK() # Remove an Observation modified_sets <- remove_Observation(PMLParametersSets, ObservationName = "CObs") # Check if the Observation is removed expect_true(!"CObs" %in% names(modified_sets$PK1IVC$Observations)) }) # Test for list_Observations test_that("list_Observations correctly lists Observations", { # Create a sample PMLParametersSets PMLParametersSets <- create_ModelPK(EliminationCpt = TRUE) # Check if the list contains the expected Observation names expect_equal(list_Observations(PMLParametersSets), c("CObs", "A0Obs")) })