test_that("trim_it works as expected", { set.seed(967) m_d <- generate_syn_data(sample_size = 1000) trimmed_data <- trim_it(data_obj = m_d, trim_quantiles = c(0.05, 0.95), variable = "w") expect_equal(length(trimmed_data), 9L) expect_equal(nrow(trimmed_data), 900L) m_xgboost <- function(nthread = 1, ntrees = 100, shrinkage = 0.3, max_depth = 6, minobspernode = 1, verbose = 0, ...) {SuperLearner::SL.xgboost( nthread = nthread, ntrees = ntrees, shrinkage=shrinkage, max_depth=max_depth, mibobspernode=minobspernode, verbose=verbose, ...)} assign("m_xgboost", m_xgboost, envir = .GlobalEnv) data_with_gps_1 <- estimate_gps( .data = m_d, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6, sl_lib = c("m_xgboost")) trimmed_gps_obj <- trim_it(data_with_gps_1, trim_quantiles = c(0.15, 0.90), variable = "gps") expect_equal(nrow(trimmed_gps_obj$.data), 750L) })