test_that("network dataset loads and has expected shape", { data(network, package = "Cascade") expect_s4_class(network, "network") expect_true(is.matrix(network@network)) expect_equal(nrow(network@network), ncol(network@network)) }) test_that("position() returns a 2-column coordinate matrix", { skip_if_not_installed("igraph") data(network, package = "Cascade") pos <- Cascade::position(network, nv = 0) expect_true(is.matrix(pos)) expect_equal(ncol(pos), 3) expect_equal(nrow(pos), nrow(network@network) - length(which(rowSums(abs(network@network) > 0) + colSums(abs(network@network) > 0) == 0))) }) test_that("analyze_network() returns expected columns", { skip_if_not_installed("tnet") data(network, package = "Cascade") ana <- analyze_network(network, nv = 0) expect_s3_class(ana, "data.frame") expect_true(all(c("node","betweenness","degree","output","closeness") %in% colnames(ana))) expect_equal(nrow(ana), nrow(network@network)) }) test_that("geneNeighborhood() returns neighborhoods when graph=FALSE", { skip_if_not_installed("igraph") data(network, package = "Cascade") set.seed(123) tgt <- sample(seq_len(nrow(network@network)), size = 1) K <- geneNeighborhood(network, targets = tgt, nv = 0, order = 2, graph = FALSE) expect_type(K, "list") expect_equal(length(K), 2) })