context("test-g05-gurobi") GUROBI_AVAILABLE <- "GUROBI" %in% installed_solvers() if (GUROBI_AVAILABLE) { library(gurobi) library(Matrix) } test_that("test a simple mixed integer program for GUROBI", { skip_on_cran() skip_if_not(GUROBI_AVAILABLE, "Skipping GUROBI test as it is not available.!") # Example from # https://www.gurobi.com/documentation/9.0/examples/mip_r.html model <- list() model$A <- matrix(c(1,2,3,1,1,0), nrow=2, ncol=3, byrow=T) model$obj <- c(1,1,2) model$modelsense <- 'max' model$rhs <- c(4,1) model$sense <- c('<', '>') model$vtype <- 'B' params <- list(OutputFlag=0) gurobiResult <- gurobi(model, params) xvar <- Variable(3, boolean=T) obj <- Maximize(xvar[1] + xvar[2] + 2 * xvar[3]) constraint <- list(xvar[1] + 2*xvar[2] + 3*xvar[3] <= 4, xvar[1] + xvar[2] >= 1) prob <- Problem(obj, constraint) cvxr <- solve(prob, solver="GUROBI") expect_equal(cvxr$status, "optimal") expect_equal(cvxr$value, gurobiResult$objval, tolerance = 1e-4) expect_equal(cvxr$getValue(xvar), matrix(gurobiResult$x), tolerance = 1e-4) }) test_that("test a simple QP for GUROBI",{ skip_on_cran() skip_if_not(GUROBI_AVAILABLE, "Skipping GUROBI test as it is not available.!") # Example from # https://www.gurobi.com/documentation/9.0/examples/qp_r.html model <- list() model$A <- matrix(c(1,2,3,1,1,0), nrow=2, byrow=T) model$Q <- matrix(c(1,0.5,0,0.5,1,0.5,0,0.5,1), nrow=3, byrow=T) model$obj <- c(2,0,0) model$rhs <- c(4,1) model$sense <- c('>', '>') result <- gurobi(model) gurobiResult <- gurobi(model) xvar <- Variable(3, nonneg=T) Pmat <- matrix(c(1,0.5,0,0.5,1,0.5,0,0.5,1), nrow=3, byrow=T) obj <- Minimize(quad_form(xvar, Pmat) + 2 * xvar[1]) constraint <- list(xvar[1] + 2*xvar[2] + 3*xvar[3] >= 4, xvar[1] + xvar[2] >= 1) prob <- Problem(obj, constraint) cvxr <- solve(prob, solver="GUROBI") expect_equal(cvxr$status, "optimal") expect_equal(cvxr$value, gurobiResult$objval, tolerance = 1e-4) expect_equal(cvxr$getValue(xvar), matrix(gurobiResult$x), tolerance = 1e-4) }) # SOC/PSD constraints not supported by GUROBI # test_that("test a simple QCP for GUROBI",{ # skip_on_cran() # skip_if_not(GUROBI_AVAILABLE, "Skipping GUROBI test as it is not available.!") # # Example from # # https://www.gurobi.com/documentation/9.0/examples/qcp_r.html # # model <- list() # # model$A <- matrix(c(1,1,1), nrow=1, byrow=T) # model$modelsense <- 'max' # model$obj <- c(1,0,0) # model$rhs <- c(1) # model$sense <- c('=') # # # First quadratic constraint: x^2 + y^2 - z^2 <= 0 # qc1 <- list() # qc1$Qc <- spMatrix(3, 3, c(1, 2, 3), c(1, 2, 3), c(1.0, 1.0, -1.0)) # qc1$rhs <- 0.0 # # # Second quadratic constraint: x^2 - yz <= 0 # qc2 <- list() # qc2$Qc <- spMatrix(3, 3, c(1, 2), c(1, 3), c(1.0, -1.0)) # qc2$rhs <- 0.0 # # model$quadcon <- list(qc1, qc2) # # gurobiResult <- gurobi(model) # # xvar <- Variable(3, nonneg=T) # obj <- Maximize(xvar[1]) # constraint <- list( xvar[1] + xvar[2] + xvar[3] == 1, # CVXR:::SOC(xvar[3], xvar[1:2]), # CVXR:::PSDConstraint(rbind(cbind(xvar[2], xvar[1]), cbind(xvar[1], xvar[3]))) # ) # prob <- Problem(obj, constraint) # cvxr <- solve(prob, solver="GUROBI") # }) # SOC/PSD constraints not supported by GUROBI # test_that("test a piecewise linear problem for GUROBI", { # skip_on_cran() # skip_if_not(GUROBI_AVAILABLE, "Skipping GUROBI test as it is not available.!") # # Example from # # https://www.gurobi.com/documentation/9.0/examples/piecewise_r.html#subsubsection:piecewise.R # model <- list() # # model$A <- matrix(c(1,2,3,1,1,0), nrow=2, byrow=T) # model$obj <- c(0,-1,0) # model$ub <- c(1,1,1) # model$rhs <- c(4,1) # model$sense <- c('<', '>') # # # Uniformly spaced points in [0.0, 1.0] # u <- seq(from=0, to=1, by=0.01) # # # First piecewise-linear function: f(x) = exp(-x) # pwl1 <- list() # pwl1$var <- 1 # pwl1$x <- u # pwl1$y <- sapply(u, function(x) exp(-x)) # # # Second piecewise-linear function: g(z) = 2 z^2 - 4 z # pwl2 <- list() # pwl2$var <- 3 # pwl2$x <- u # pwl2$y <- sapply(u, function(z) 2 * z * z - 4 * z) # # model$pwlobj <- list(pwl1, pwl2) # # gurobiResult <- gurobi(model) # # xvar <- Variable(3) # obj <- Minimize(CVXR:::Exp(xvar[1]) - xvar[2] + 2 *square(xvar[3]) - 4 * xvar[3]) # constraint <- list(xvar[1] + 2 * xvar[2] + 3 * xvar[3] <= 4, # xvar[1] + xvar[2] >= 1, # xvar[1] <= 1, # xvar[2] <= 1, # xvar[3] <= 1) # # prob <- Problem(obj, constraint) # cvxr <- solve(prob, solver="GUROBI") # # })