context("test-vignettes") test_that("Test non-negative least squares", { skip_on_cran() library(MASS) print("LS") ## Generate problem data s <- 1 m <- 10 n <- 300 mu <- rep(0, 9) Sigma <- data.frame(c(1.6484, -0.2096, -0.0771, -0.4088, 0.0678, -0.6337, 0.9720, -1.2158, -1.3219), c(-0.2096, 1.9274, 0.7059, 1.3051, 0.4479, 0.7384, -0.6342, 1.4291, -0.4723), c(-0.0771, 0.7059, 2.5503, 0.9047, 0.9280, 0.0566, -2.5292, 0.4776, -0.4552), c(-0.4088, 1.3051, 0.9047, 2.7638, 0.7607, 1.2465, -1.8116, 2.0076, -0.3377), c(0.0678, 0.4479, 0.9280, 0.7607, 3.8453, -0.2098, -2.0078, -0.1715, -0.3952), c(-0.6337, 0.7384, 0.0566, 1.2465, -0.2098, 2.0432, -1.0666, 1.7536, -0.1845), c(0.9720, -0.6342, -2.5292, -1.8116, -2.0078, -1.0666, 4.0882, -1.3587, 0.7287), c(-1.2158, 1.4291, 0.4776, 2.0076, -0.1715, 1.7536, -1.3587, 2.8789, 0.4094), c(-1.3219, -0.4723, -0.4552, -0.3377, -0.3952, -0.1845, 0.7287, 0.4094, 4.8406)) X <- MASS::mvrnorm(n, mu, Sigma) X <- cbind(rep(1, n), X) b <- c(0, 0.8, 0, 1, 0.2, 0, 0.4, 1, 0, 0.7) y <- X %*% b + rnorm(n, 0, s) ## Construct the OLS problem without constraints beta <- Variable(m) objective <- Minimize(sum((y - X %*% beta)^2)) prob <- Problem(objective) ## Solve the OLS problem for beta system.time(result <- solve(prob)) beta_ols <- result$getValue(beta) ## Add non-negativity constraint on beta constraints <- list(beta >= 0) prob2 <- Problem(objective, constraints) ## Solve the NNLS problem for beta system.time(result2 <- solve(prob2)) beta_nnls <- result2$getValue(beta) expect_true(all(beta_nnls >= -1e-6)) ## All resulting beta should be non-negative ## Calculate the fitted y values fit_ols <- X %*% beta_ols fit_nnls <- X %*% beta_nnls ## Plot coefficients for OLS and NNLS coeff <- cbind(b, beta_ols, beta_nnls) colnames(coeff) <- c("Actual", "OLS", "NNLS") rownames(coeff) <- paste("beta", 1:length(b)-1, sep = "") barplot(t(coeff), ylab = "Coefficients", beside = TRUE, legend.text = TRUE) }) test_that("Test censored regression", { skip_on_cran() ## Problem data n <- 30 M <- 50 K <- 200 set.seed(n*M*K) print("CENSORED") X <- matrix(stats::rnorm(K*n), nrow = K, ncol = n) beta_true <- matrix(stats::rnorm(n), nrow = n, ncol = 1) y <- X %*% beta_true + 0.3*sqrt(n)*stats::rnorm(K) ## Order variables based on y idx <- order(y, decreasing = FALSE) y_ordered <- y[idx] X_ordered <- X[idx,] ## Find cutoff and censor D <- (y_ordered[M] + y_ordered[M+1])/2 y_censored <- pmin(y_ordered, D) plot_results <- function(beta_res, bcol = "blue", bpch = 17) { graphics::plot(1:M, y_censored[1:M], col = "black", xlab = "Observations", ylab = "y", ylim = c(min(y), max(y)), xlim = c(1,K)) graphics::points((M+1):K, y_ordered[(M+1):K], col = "red") graphics::points(1:K, X_ordered %*% beta_res, col = bcol, pch = bpch) graphics::abline(a = D, b = 0, col = "black", lty = "dashed") graphics::legend("topleft", c("Uncensored", "Censored", "Estimate"), col = c("black", "red", bcol), pch = c(1,1,bpch)) } ## Regular OLS beta <- Variable(n) obj <- sum((y_censored - X_ordered %*% beta)^2) prob <- Problem(Minimize(obj)) result <- solve(prob) expect_equal(result$status, "optimal") beta_ols <- result$getValue(beta) plot_results(beta_ols) ## OLS using uncensored data obj <- sum((y_censored[1:M] - X_ordered[1:M,] %*% beta)^2) prob <- Problem(Minimize(obj)) result <- solve(prob) expect_equal(result$status, "optimal") beta_unc <- result$getValue(beta) plot_results(beta_unc) ## Censored regression obj <- sum((y_censored[1:M] - X_ordered[1:M,] %*% beta)^2) constr <- list(X_ordered[(M+1):K,] %*% beta >= D) prob <- Problem(Minimize(obj), constr) result <- solve(prob) expect_equal(result$status, "optimal") beta_cens <- result$getValue(beta) plot_results(beta_cens) }) test_that("Test Elastic-net regression", { skip_on_cran() set.seed(1) print("ELASTIC") # Problem data n = 20 m = 1000 DENSITY = 0.25 # Fraction of non-zero beta beta_true = matrix(rnorm(n), ncol = 1) idxs <- sample.int(n, size = floor((1-DENSITY)*n), replace = FALSE) beta_true[idxs] <- 0 sigma = 45 X = matrix(rnorm(m*n, sd = 5), nrow = m, ncol = n) eps <- matrix(rnorm(m, sd = sigma), ncol = 1) y = X %*% beta_true + eps # Elastic-net penalty function elastic_reg <- function(beta, lambda = 0, alpha = 0) { ridge <- (1 - alpha) * sum(beta^2) lasso <- alpha * p_norm(beta, 1) lambda * (lasso + ridge) } TRIALS <- 10 beta_vals <- matrix(0, nrow = n, ncol = TRIALS) lambda_vals <- 10^seq(-2, log10(50), length.out = TRIALS) beta <- Variable(n) loss <- sum((y - X %*% beta)^2)/(2*m) # Elastic-net regression alpha <- 0.75 for(i in 1:TRIALS) { lambda <- lambda_vals[i] obj <- loss + elastic_reg(beta, lambda, alpha) prob <- Problem(Minimize(obj)) result <- solve(prob) expect_equal(result$status, "optimal") beta_vals[,i] <- result$getValue(beta) } # Plot coefficients against regularization plot(0, 0, type = "n", main = "Regularization Path for Elastic-net Regression", xlab = expression(lambda), ylab = expression(beta), ylim = c(-0.75, 1.25), xlim = c(0, 50)) matlines(lambda_vals, t(beta_vals)) # Compare with glmnet results library(glmnet) model_net <- glmnet(X, y, family = "gaussian", alpha = alpha, lambda = lambda_vals, standardize = FALSE, intercept = FALSE) coef_net <- coef(model_net)[-1, seq(TRIALS, 1, by = -1)] # Reverse order to match beta_vals sum((beta_vals - coef_net)^2)/(n*TRIALS) }) test_that("Test Huber regression", { skip_on_cran() n <- 1 m <- 450 M <- 1 ## Huber threshold p <- 0.1 ## Fraction of responses with sign flipped print("HUBER") ## Generate problem data beta_true <- 5*matrix(stats::rnorm(n), nrow = n) X <- matrix(stats::rnorm(m*n), nrow = m, ncol = n) y_true <- X %*% beta_true eps <- matrix(stats::rnorm(m), nrow = m) ## Randomly flip sign of some responses factor <- 2*stats::rbinom(m, size = 1, prob = 1-p) - 1 y <- factor * y_true + eps ## Solve ordinary least squares problem beta <- Variable(n) rel_err <- norm(beta - beta_true, "F")/norm(beta_true, "F") obj <- sum((y - X %*% beta)^2) prob <- Problem(Minimize(obj)) result <- solve(prob) expect_equal(result$status, "optimal") beta_ols <- result$getValue(beta) err_ols <- result$getValue(rel_err) ## Plot fit against measured responses plot(X[factor == 1], y[factor == 1], col = "black", xlab = "X", ylab = "y") points(X[factor == -1], y[factor == -1], col = "red") lines(X, X %*% beta_ols, col = "blue") ## Solve Huber regression problem obj <- sum(CVXR::huber(y - X %*% beta, M)) prob <- Problem(Minimize(obj)) result <- solve(prob) expect_equal(result$status, "optimal") beta_hub <- result$getValue(beta) err_hub <- result$getValue(rel_err) lines(X, X %*% beta_hub, col = "seagreen", lty = "dashed") ## Solve ordinary least squares assuming sign flips known obj <- sum((y - factor*(X %*% beta))^2) prob <- Problem(Minimize(obj)) result <- solve(prob) expect_equal(result$status, "optimal") beta_prs <- result$getValue(beta) err_prs <- result$getValue(rel_err) lines(X, X %*% beta_prs, col = "black") legend("topright", c("OLS", "Huber", "Prescient"), col = c("blue", "seagreen", "black"), lty = 1) }) test_that("Test logistic regression", { skip_on_cran() n <- 20 m <- 1000 offset <- 0 sigma <- 45 DENSITY <- 0.2 print("LOGISTIC") beta_true <- stats::rnorm(n) idxs <- sample(n, size = floor((1-DENSITY)*n), replace = FALSE) beta_true[idxs] <- 0 X <- matrix(stats::rnorm(m*n, 0, 5), nrow = m, ncol = n) y <- sign(X %*% beta_true + offset + stats::rnorm(m, 0, sigma)) beta <- Variable(n) obj <- -sum(logistic(-X[y <= 0,] %*% beta)) - sum(logistic(X[y == 1,] %*% beta)) prob <- Problem(Maximize(obj)) result <- solve(prob) expect_equal(result$status, "optimal") log_odds <- result$getValue(X %*% beta) beta_res <- result$getValue(beta) y_probs <- 1/(1 + exp(-X %*% beta_res)) log(y_probs/(1 - y_probs)) }) test_that("Test saturating hinges problem", { skip_on_cran() library(ElemStatLearn) print("SAT HINGES") ## Import and sort data data(bone) X <- bone[bone$gender == "female",]$age y <- bone[bone$gender == "female",]$spnbmd ord <- order(X, decreasing = FALSE) X <- X[ord] y <- y[ord] ## Choose knots evenly distributed along domain k <- 10 lambdas <- c(1, 0.5, 0.01) idx <- floor(seq(1, length(X), length.out = k)) knots <- X[idx] ## Saturating hinge f_est <- function(x, knots, w0, w) { hinges <- sapply(knots, function(t) { pmax(x - t, 0) }) w0 + hinges %*% w } ## Loss function loss_obs <- function(y, f) { (y - f)^2 } ## Form problem w0 <- Variable(1) w <- Variable(k) loss <- sum(loss_obs(y, f_est(X, knots, w0, w))) constr <- list(sum(w) == 0) xrange <- seq(min(X), max(X), length.out = 100) splines <- matrix(0, nrow = length(xrange), ncol = length(lambdas)) for(i in 1:length(lambdas)) { lambda <- lambdas[i] reg <- lambda * p_norm(w, 1) obj <- loss + reg prob <- Problem(Minimize(obj), constr) ## Solve problem and save spline weights result <- solve(prob) expect_equal(result$status, "optimal") w0s <- result$getValue(w0) ws <- result$getValue(w) splines[,i] <- f_est(xrange, knots, w0s, ws) } ## Plot saturating hinges plot(X, y, xlab = "Age", ylab = "Change in Bone Density", col = "black", type = "p") matlines(xrange, splines, col = "blue", lty = 1:length(lambdas), lwd = 1.5) legend("topright", as.expression(lapply(lambdas, function(x) bquote(lambda==.(x)))), col = "blue", lty = 1:length(lambdas), bty = "n") ## Add outliers to data set.seed(1) nout <- 50 X_out <- runif(nout, min(X), max(X)) y_out <- runif(nout, min(y), 3*max(y)) + 0.3 X_all <- c(X, X_out) y_all <- c(y, y_out) ## Solve with squared error loss loss_obs <- function(y, f) { (y - f)^2 } loss <- sum(loss_obs(y_all, f_est(X_all, knots, w0, w))) prob <- Problem(Minimize(loss + reg), constr) result <- solve(prob) expect_equal(result$status, "optimal") spline_sq <- f_est(xrange, knots, result$getValue(w0), result$getValue(w)) ## Solve with Huber loss loss_obs <- function(y, f, M) { CVXR::huber(y - f, M) } loss <- sum(loss_obs(y, f_est(X, knots, w0, w), 0.01)) prob <- Problem(Minimize(loss + reg), constr) result <- solve(prob) expect_equal(result$status, "optimal") spline_hub <- f_est(xrange, knots, result$getValue(w0), result$getValue(w)) ## Compare fitted functions with squared error and Huber loss plot(X, y, xlab = "Age", ylab = "Change in Bone Density", col = "black", type = "p", ylim = c(min(y), 1)) points(X_out, y_out, col = "red", pch = 16) matlines(xrange, cbind(spline_hub, spline_sq), col = "blue", lty = 1:2, lwd = 1.5) legend("topright", c("Huber Loss", "Squared Loss"), col = "blue", lty = 1:2, bty = "n") }) test_that("Test log-concave distribution estimation", { skip_on_cran() set.seed(1) print("LOG CONCAVE") ## Calculate a piecewise linear function pwl_fun <- function(x, knots) { n <- nrow(knots) x0 <- sort(knots$x, decreasing = FALSE) y0 <- knots$y[order(knots$x, decreasing = FALSE)] slope <- diff(y0)/diff(x0) sapply(x, function(xs) { if(xs <= x0[1]) y0[1] + slope[1]*(xs -x0[1]) else if(xs >= x0[n]) y0[n] + slope[n-1]*(xs - x0[n]) else { idx <- which(xs <= x0)[1] y0[idx-1] + slope[idx-1]*(xs - x0[idx-1]) } }) } ## Problem data m <- 25 xrange <- 0:100 knots <- data.frame(x = c(0, 25, 65, 100), y = c(10, 30, 40, 15)) xprobs <- pwl_fun(xrange, knots)/15 xprobs <- exp(xprobs)/sum(exp(xprobs)) x <- sample(xrange, size = m, replace = TRUE, prob = xprobs) K <- max(xrange) xhist <- hist(x, breaks = -1:K, right = TRUE, include.lowest = FALSE) counts <- xhist$counts ## Solve problem with log-concave constraint u <- Variable(K+1) obj <- t(counts) %*% u constraints <- list(sum(exp(u)) <= 1, diff(u[1:K]) >= diff(u[2:(K+1)])) prob <- Problem(Maximize(obj), constraints) result <- solve(prob) expect_equal(result$status, "optimal") pmf <- result$getValue(exp(u)) ## Plot probability mass function cl <- rainbow(3) plot(NA, xlim = c(0, 100), ylim = c(0, 0.025), xlab = "x", ylab = "Probability Mass Function") lines(xrange, xprobs, lwd = 2, col = cl[1]) lines(density(x, bw = "sj"), lwd = 2, col = cl[2]) ## lines(counts/sum(counts), lwd = 2, col = cl[2]) lines(xrange, pmf, lwd = 2, col = cl[3]) legend("topleft", c("True", "Empirical", "Optimal Estimate"), lty = c(1,1,1), col = cl) ## Plot cumulative distribution function plot(NA, xlim = c(0, 100), ylim = c(0, 1), xlab = "x", ylab = "Cumulative Distribution Function") lines(xrange, base::cumsum(xprobs), lwd = 2, col = cl[1]) lines(xrange, base::cumsum(counts)/sum(counts), lwd = 2, col = cl[2]) lines(xrange, base::cumsum(pmf), lwd = 2, col = cl[3]) legend("topleft", c("True", "Empirical", "Optimal Estimate"), lty = c(1,1,1), col = cl) }) test_that("Test channel capacity problem", { skip_on_cran() ## Problem data n <- 2 m <- 2 P <- rbind(c(0.75, 0.25), ## Channel transition matrix c(0.25, 0.75)) print("CHANNEL") ## Form problem x <- Variable(n) ## Probability distribution of input signal x(t) y <- P %*% x ## Probability distribution of output signal y(t) c <- apply(P * log2(P), 2, sum) I <- t(c) %*% x + sum(entr(y)) ## Mutual information between x and y obj <- Maximize(I) constraints <- list(sum(x) == 1, x >= 0) prob <- Problem(obj, constraints) result <- solve(prob) expect_equal(result$status, "optimal") ## Optimal channel capacity and input signal. result$value result$getValue(x) }) test_that("Test optimal allocation in a Gaussian broadcast channel", { skip_on_cran() ## Problem data n <- 5 alpha <- seq(10, n-1+10)/n beta <- seq(10, n-1+10)/n P_tot <- 0.5 W_tot <- 1.0 print("OPTIMAL ALLOCATION") ## Form problem P <- Variable(n) ## Power W <- Variable(n) ## Bandwidth R <- kl_div(alpha*W, alpha*(W + beta*P)) - alpha*beta*P ## Bitrate objective <- Minimize(sum(R)) constraints <- list(P >= 0, W >= 0, sum(P) == P_tot, sum(W) == W_tot) prob <- Problem(objective, constraints) result <- solve(prob) expect_equal(result$status, "optimal") ## Optimal utility, power, and bandwidth -result$value result$getValue(P) result$getValue(W) }) test_that("Test catenary problem", { skip_on_cran() ## Problem data m <- 101 L <- 2 h <- L/(m-1) print("CATENARY") ## Form objective x <- Variable(m) y <- Variable(m) objective <- Minimize(sum(y)) ## Form constraints constraints <- list(x[1] == 0, y[1] == 1, x[m] == 1, y[m] == 1, diff(x)^2 + diff(y)^2 <= h^2) ## Solve the catenary problem prob <- Problem(objective, constraints) system.time(result <- solve(prob)) expect_equal(result$status, "optimal") ## Plot and compare with ideal catenary xs <- result$getValue(x) ys <- result$getValue(y) graphics::plot(c(0, 1), c(0, 1), type = 'n', xlab = "x", ylab = "y") graphics::lines(xs, ys, col = "blue", lwd = 2) graphics::grid() ideal <- function(x) { 0.22964*cosh((x-0.5)/0.22964)-0.02603 } expect_equal(ys, ideal(xs), tolerance = 1e-3) ## points(c(0, 1), c(1, 1)) ## curve(0.22964*cosh((x-0.5)/0.22964)-0.02603, 0, 1, col = "red", add = TRUE) ## grid() ## Lower right endpoint and add staircase structure ground <- sapply(seq(0, 1, length.out = m), function(x) { if(x < 0.2) return(0.6) else if(x >= 0.2 && x < 0.4) return(0.4) else if(x >= 0.4 && x < 0.6) return(0.2) else return(0) }) ## Solve catenary problem with ground constraint constraints <- c(constraints, y >= ground) constraints[[4]] <- (y[m] == 0.5) prob <- Problem(objective, constraints) result <- solve(prob) expect_equal(result$status, "optimal") ## Plot catenary against ground xs <- result$getValue(x) ys <- result$getValue(y) graphics::plot(c(0, 1), c(1, 0.5), type = "n", xlab = "x", ylab = "y", ylim = c(0, 1)) graphics::points(c(0, 1), c(1, 0.5)) graphics::lines(xs, ys, col = "blue", lwd = 2) graphics::lines(xs, ground, col = "red") graphics::grid() }) test_that("Test direct standardization problem", { skip_on_cran() print("DIRECT") skew_sample <- function(data, bias) { if(missing(bias)) bias <- rep(1.0, ncol(data)) num <- exp(data %*% bias) return(num / sum(num)) } plot_cdf <- function(data, probs, color = 'k') { if(missing(probs)) probs <- rep(1.0/length(data), length(data)) distro <- cbind(data, probs) dsort <- distro[order(distro[,1]),] ecdf <- base::cumsum(dsort[,2]) lines(dsort[,1], ecdf, col = color) } ## Problem data n <- 2 m <- 1000 msub <- 100 ## Generate original distribution sex <- stats::rbinom(m, 1, 0.5) age <- sample(10:60, m, replace = TRUE) mu <- 5 * sex + 0.1 * age X <- cbind(sex, age) y <- stats::rnorm(mu, 1.0) b <- as.matrix(apply(X, 2, mean)) ## Generate skewed subsample skew <- skew_sample(X, c(-0.95, -0.05)) sub <- sample(1:m, msub, replace = TRUE, prob = skew) ## Construct the direct standardization problem w <- Variable(msub) objective <- sum(entr(w)) constraints <- list(w >= 0, sum(w) == 1, t(X[sub,]) %*% w == b) prob <- Problem(Maximize(objective), constraints) ## Solve for the distribution weights result <- solve(prob) expect_equal(result$status, "optimal") weights <- result$getValue(w) ## Plot probability density function cl <- rainbow(3) plot(density(y), col = cl[1], xlab = "y", ylab = NA, ylim = c(0, 0.5), zero.line = FALSE) lines(density(y[sub]), col = cl[2]) lines(density(y[sub], weights = weights), col = cl[3]) legend("topleft", c("True", "Sample", "Estimate"), lty = c(1,1,1), col = cl) ## Plot cumulative distribution function plot(NA, xlab = "y", ylab = NA, xlim = c(-2, 3), ylim = c(0, 1)) plot_cdf(y, color = cl[1]) plot_cdf(y[sub], color = cl[2]) plot_cdf(y[sub], weights, color = cl[3]) legend("topleft", c("True", "Sample", "Estimate"), lty = c(1,1,1), col = cl) }) test_that("Test risk-return tradeoff in portfolio optimization", { skip_on_cran() print("PORTFOLIO") ## Problem data set.seed(10) n <- 10 SAMPLES <- 100 mu <- matrix(abs(stats::rnorm(n)), nrow = n) Sigma <- matrix(stats::rnorm(n^2), nrow = n, ncol = n) Sigma <- t(Sigma) %*% Sigma ## Form problem w <- Variable(n) ret <- t(mu) %*% w risk <- quad_form(w, Sigma) constraints <- list(w >= 0, sum(w) == 1) ## Risk aversion parameters gammas <- 10^seq(-2, 3, length.out = SAMPLES) ret_data <- rep(0, SAMPLES) risk_data <- rep(0, SAMPLES) w_data <- matrix(0, nrow = SAMPLES, ncol = n) ## Compute trade-off curve for(i in 1:length(gammas)) { gamma <- gammas[i] objective <- ret - gamma * risk prob <- Problem(Maximize(objective), constraints) result <- solve(prob) expect_equal(result$status, "optimal") ## Evaluate risk/return for current solution risk_data[i] <- result$getValue(sqrt(risk)) ret_data[i] <- result$getValue(ret) w_data[i,] <- result$getValue(w) } ## Plot trade-off curve plot(risk_data, ret_data, xlab = "Risk (Standard Deviation)", ylab = "Return", xlim = c(0, 4), ylim = c(0, 2), type = "l", lwd = 2, col = "blue") points(sqrt(diag(Sigma)), mu, col = "red", cex = 1.5, pch = 16) markers_on <- c(10, 20, 30, 40) for(marker in markers_on) { points(risk_data[marker], ret_data[marker], col = "black", cex = 1.5, pch = 15) nstr <- sprintf("%.2f", gammas[marker]) text(risk_data[marker] + 0.2, ret_data[marker] - 0.05, bquote(paste(gamma, " = ", .(nstr))), cex = 1.5) } ## Plot weights for a few gamma w_plot <- t(w_data[markers_on,]) colnames(w_plot) <- sprintf("%.2f", gammas[markers_on]) barplot(w_plot, xlab = expression(paste("Risk Aversion (", gamma, ")", sep = "")), ylab = "Fraction of Budget") }) test_that("Test Kelly gambling optimal bets", { skip_on_cran() print("KELLY") set.seed(1) n <- 20 ## Total bets K <- 100 ## Number of possible returns PERIODS <- 100 TRIALS <- 5 ## Generate return probabilities ps <- runif(K) ps <- ps/sum(ps) ## Generate matrix of possible returns rets <- runif(K*(n-1), 0.5, 1.5) shuff <- sample(1:length(rets), size = length(rets), replace = FALSE) rets[shuff[1:30]] <- 0 ## Set 30 returns to be relatively low rets[shuff[31:60]] <- 5 ## Set 30 returns to be relatively high rets <- matrix(rets, nrow = K, ncol = n-1) rets <- cbind(rets, rep(1, K)) ## Last column represents not betting ## Solve for Kelly optimal bets b <- Variable(n) obj <- Maximize(t(ps) %*% log(rets %*% b)) constraints <- list(sum(b) == 1, b >= 0) prob <- Problem(obj, constraints) result <- solve(prob) expect_equal(result$status, "optimal") bets <- result$getValue(b) ## Naive betting scheme: bet in proportion to expected return bets_cmp <- matrix(0, nrow = n) bets_cmp[n] <- 0.15 ## Hold 15% of wealth rets_avg <- ps %*% rets ## tidx <- order(rets_avg[-n], decreasing = TRUE)[1:9] tidx <- 1:(n-1) fracs <- rets_avg[tidx]/sum(rets_avg[tidx]) bets_cmp[tidx] <- fracs*(1-bets_cmp[n]) ## Calculate wealth over time wealth <- matrix(0, nrow = PERIODS, ncol = TRIALS) wealth_cmp <- matrix(0, nrow = PERIODS, ncol = TRIALS) for(i in 1:TRIALS) { sidx <- sample(1:K, size = PERIODS, replace = TRUE, prob = ps) winnings <- rets[sidx,] %*% bets wealth[,i] <- cumprod(winnings) winnings_cmp <- rets[sidx,] %*% bets_cmp wealth_cmp[,i] <- cumprod(winnings_cmp) } ## Plot Kelly optimal growth trajectories matplot(1:PERIODS, wealth, xlab = "Time", ylab = "Wealth", log = "y", type = "l", col = "red", lty = 1, lwd = 2) matlines(1:PERIODS, wealth_cmp, col = "blue", lty = 2, lwd = 2) legend("topleft", c("Kelly Optimal Bets", "Naive Bets"), col = c("red", "blue"), lty = c(1, 2), lwd = 2, bty = "n") }) test_that("Test worst-case covariance", { skip_on_cran() print("WORST CASE") ## Problem data w <- matrix(c(0.1, 0.2, -0.05, 0.1)) ## Constraint matrix: ## [[0.2, + , +, +-], ## [+, 0.1, -, - ], ## [+, -, 0.3, + ], ## [+-, -, +, 0.1]] ## Form problem Sigma <- Variable(4, 4, PSD = TRUE) obj <- Maximize(t(w) %*% Sigma %*% w) constraints <- list(Sigma[1,1] == 0.2, Sigma[2,2] == 0.1, Sigma[3,3] == 0.3, Sigma[4,4] == 0.1, Sigma[1,2] >= 0, Sigma[1,3] >= 0, Sigma[2,3] <= 0, Sigma[2,4] <= 0, Sigma[3,4] >= 0) prob <- Problem(obj, constraints) result <- solve(prob, solver = "SCS") expect_equal(result$status, "optimal") print(result$getValue(Sigma)) ## Sigma_true <- rbind(c(0.2, 0.0978, 0, 0.0741), ## c(0.0978, 0.1, -0.101, 0), ## c(0, -0.101, 0.3, 0), ## c(0.0741, 0, 0, 0.1)) ## The new SCS solver gives slightly different results from the above ## So the values below have been obtained from cvxpy 1.25. Sigma_true <- rbind(c(0.2, 0.09674, 0, 0.0762), c(0.09674, 0.1, -0.103, 0), c(0, -0.103, 0.3, 0.0041), c(0.0762, 0, .0041, 0.1)) expect_equal(sqrt(result$value), 0.1232, tolerance = 1e-3) expect_equal(result$getValue(Sigma), Sigma_true, tolerance = 1e-3) ## Problem data n <- 5 w <- rexp(n) w <- w / sum(w) mu <- abs(matrix(stats::rnorm(n), nrow = n, ncol = 1))/15 Sigma_nom <- matrix(runif(n^2, -0.15, 0.8), nrow = n, ncol = n) Sigma_nom <- t(Sigma_nom) %*% Sigma_nom ## Known upper and lower bounds Delta <- matrix(0.2, nrow = n, ncol = n) diag(Delta) <- 0 U <- Sigma_nom + Delta L <- Sigma_nom - Delta Sigma <- Variable(n, n, PSD = TRUE) obj <- quad_form(w, Sigma) constr <- list(L <= Sigma, Sigma <= U, Sigma == t(Sigma)) prob <- Problem(Maximize(obj), constr) result <- solve(prob) expect_equal(result$status, "optimal") print(result$getValue(Sigma)) }) test_that("Test sparse inverse covariance estimation", { skip_on_cran() library(Matrix) library(expm) print("SPARSE INV") set.seed(1) n <- 10 ## Dimension of matrix m <- 1000 ## Number of samples alphas <- c(10, 4, 1) ## Create sparse, symmetric PSD matrix S A <- rsparsematrix(n, n, 0.15, rand.x = stats::rnorm) Strue <- A %*% t(A) + 0.05 * diag(rep(1, n)) ## Force matrix to be strictly positive definite image(Strue != 0, main = "Inverse of true covariance matrix") ## Create covariance matrix associated with S R <- base::solve(Strue) ## Sample from distribution with covariance R ## If Y ~ N(0, I), then R^{1/2} * Y ~ N(0, R) since R is symmetric x_sample <- matrix(stats::rnorm(n*m), nrow = m, ncol = n) %*% t(expm::sqrtm(R)) Q <- cov(x_sample) ## Sample covariance matrix S <- Variable(n, n, PSD = TRUE) ## Variable constrained to positive semidefinite cone obj <- Maximize(log_det(S) - matrix_trace(S %*% Q)) for(alpha in alphas) { constraints <- list(sum(abs(S)) <= alpha) ## Form and solve optimization problem prob <- Problem(obj, constraints) result <- solve(prob) expect_equal(result$status, "optimal") ## Create covariance matrix R_hat <- base::solve(result$getValue(S)) Sres <- result$getValue(S) Sres[abs(Sres) <= 1e-4] <- 0 title <- bquote(bold(paste("Estimated inv. cov matrix (", alpha, " = ", .(alpha), ")"))) image(Sres != 0, main = title) } }) test_that("Test fastest mixing Markov chain (FMMC)", { skip_on_cran() print("MCMC") ## Boyd, Diaconis, and Xiao. SIAM Rev. 46 (2004) pgs. 667-689 at pg. 672 ## Form the complementary graph antiadjacency <- function(g) { n <- max(as.numeric(names(g))) ## Assumes names are integers starting from 1 a <- lapply(1:n, function(i) c()) names(a) <- 1:n for(x in names(g)) { for(y in 1:n) { if(!(y %in% g[[x]])) a[[x]] <- c(a[[x]], y) } } a } ## Fastest mixing Markov chain on graph g FMMC <- function(g, verbose = FALSE) { a <- antiadjacency(g) n <- length(names(a)) P <- Variable(n, n) o <- rep(1, n) objective <- Minimize(norm(P - 1.0/n, "2")) constraints <- list(P %*% o == o, t(P) == P, P >= 0) for(i in names(a)) { for(j in a[[i]]) { ## (i-j) is a not-edge of g! idx <- as.numeric(i) if(idx != j) constraints <- c(constraints, P[idx,j] == 0) } } prob <- Problem(objective, constraints) result <- solve(prob) expect_equal(result$status, "optimal") if(verbose) cat("Status: ", result$status, ", Optimal Value = ", result$value) list(status = result$status, value = result$value, P = result$getValue(P)) } disp_result <- function(states, P, tol = 1e-3) { rownames(P) <- states colnames(P) <- states print(P) } ## SIAM Rev. 46 examples pg. 674: Figure 1 and Table 1 ## a) line graph L(4) g <- list("1" = 2, "2" = c(1,3), "3" = c(2,4), "4" = 3) result <- FMMC(g, verbose = TRUE) disp_result(names(g), result$P) ## b) triangle + one edge g <- list("1" = 2, "2" = c(1,3,4), "3" = c(2,4), "4" = c(2,3)) result <- FMMC(g, verbose = TRUE) disp_result(names(g), result$P) ## c) bipartite 2 + 3 g <- list("1" = c(2,4,5), "2" = c(1,3), "3" = c(2,4,5), "4" = c(1,3), "5" = c(1,3)) result <- FMMC(g, verbose = TRUE) disp_result(names(g), result$P) ## d) square + central point g <- list("1" = c(2,3,5), "2" = c(1,4,5), "3" = c(1,4,5), "4" = c(2,3,5), "5" = c(1,2,3,4,5)) result <- FMMC(g, verbose = TRUE) disp_result(names(g), result$P) })