test_that("predict function works as expected!", { # Generate sample data skip_on_cran() set.seed(2021) dataset_cont <- generate_cre_dataset(n = 400, rho = 0, n_rules = 2, p = 10, effect_size = 2, binary_outcome = FALSE) y <- dataset_cont[["y"]] z <- dataset_cont[["z"]] X <- as.data.frame(dataset_cont[["X"]]) X_names <- names(as.data.frame(X)) method_params <- list(ratio_dis = 0.5, ite_method = "bart", learner_ps = "SL.xgboost", learner_y = "SL.xgboost") hyper_params <- list(intervention_vars = NULL, offset = NULL, ntrees_rf = 100, ntrees_gbm = 50, node_size = 20, max_rules = 50, max_depth = 3, t_decay = 0.025, t_ext = 0.025, t_corr = 1, stability_selection = "vanilla", cutoff = 0.8, pfer = 1, B = 2, subsample = 0.5) result <- cre(y, z, X, method_params, hyper_params) ite_pred <- predict(result, X) expect_true(length(ite_pred) == nrow(X)) hyper_params$t_corr <- 0 hyper_params$subsample <- 0.1 result <- cre(y, z, X, method_params, hyper_params) expect_true(length(ite_pred) == nrow(X)) })