test_that("Propensity Score Estimated Correctly", { # Generate sample data skip_on_cran() set.seed(2021) dataset <- generate_cre_dataset(n = 100, rho = 0, n_rules = 2, p = 10, effect_size = 0.5, binary_outcome = FALSE) z <- dataset[["z"]] X <- dataset[["X"]] ps_method <- "SL.xgboost" # Incorrect data inputs expect_error(estimate_ps(z = "test", X, ps_method)) expect_error(estimate_ps(z, X = NA, ps_method)) # Correct outputs est_ps <- estimate_ps(z, X, ps_method) expect_true(length(est_ps) == length(z)) expect_true(class(est_ps) == "numeric") expect_true(is.vector(est_ps)) #values expect_equal(est_ps[2], 0.5685197, tolerance = 0.00001) expect_equal(est_ps[37], 0.124416, tolerance = 0.00001) })