test_that("plot_dist", { # coin coin <- build_example_coin(up_to = "new_coin", quietly = TRUE) # get codes for P2P group pcodes <- coin$Meta$Ind$iCode[coin$Meta$Ind$Parent == "P2P"] pcodes <- pcodes[!is.na(pcodes)] # test all plot types for(ptype in c("Box", "Dot", "Violin", "Violindot", "Histogram")){ # make plot plt <- plot_dist(coin, dset = "Raw", iCodes = "P2P", Level = 1, type = ptype) # check class expect_s3_class(plt, "ggplot") # check correct indicators expect_setequal(pcodes, unique(plt$data$ind)) # normalised plt <- plot_dist(coin, dset = "Raw", iCodes = "P2P", Level = 1, type = ptype, normalise = TRUE) expect_true(all(plt$data$values >= 0 & plt$data$values <= 100)) } }) test_that("plot_dist", { # # build example coin coin <- build_example_coin(up_to = "new_coin") # dot plot of LPI plt <- plot_dot(coin, dset = "Raw", iCode = "LPI") # check class expect_s3_class(plt, "ggplot") # check data iData <- get_dset(coin, dset = "Raw") # get LPI data x <- iData$LPI # check plot data equal to expected expect_setequal(plt$data$x, x) # unit labels plt <- plot_dot(coin, dset = "Raw", iCode = "LPI", usel = c("IND", "JPN")) # test lables and point positions expect_setequal(plt$layers[[3]]$aes_params$label, c("IND", "JPN")) expect_setequal(plt$layers[[2]]$data$x, iData$LPI[iData$uCode %in% c("IND", "JPN")]) # remaining features plt <- plot_dot(coin, dset = "Raw", iCode = "Flights", usel = c("GBR", "AUS"), marker_type = 16, add_stat = "median", stat_label = "test1", show_ticks = FALSE, plabel = "iName+unit", vert_adjust = 0.5) # pretty much just check obj here expect_s3_class(plt, "ggplot") })