test_that("a solution is found in the two-tensor case", { set.seed(123) I = 10 J = 5 K = 3 L = 8 M = 3 A = array(rnorm(I*2), c(I, 2)) B = array(rnorm(J*2), c(J, 2)) C = array(rnorm(K*2), c(K, 2)) D = array(rnorm(L*2), c(L, 2)) E = array(rnorm(M*2), c(M, 2)) df1 = reinflateTensor(A, B, C) df2 = reinflateTensor(A, D, E) datasets = list(df1, df2) modes = list(c(1,2,3), c(1,4,5)) Z = setupCMTFdata(datasets, modes, normalize=FALSE) expect_no_error(cmtf_opt(Z, 1, max_iter=2)) }) test_that("a solution is found when running LBFGS", { set.seed(123) I = 10 J = 5 K = 3 L = 8 M = 3 A = array(rnorm(I*2), c(I, 2)) B = array(rnorm(J*2), c(J, 2)) C = array(rnorm(K*2), c(K, 2)) D = array(rnorm(L*2), c(L, 2)) E = array(rnorm(M*2), c(M, 2)) df1 = reinflateTensor(A, B, C) df2 = reinflateTensor(A, D, E) datasets = list(df1, df2) modes = list(c(1,2,3), c(1,4,5)) Z = setupCMTFdata(datasets, modes, normalize=FALSE) expect_no_error(cmtf_opt(Z, 1, max_iter=2, method="L-BFGS")) }) test_that("the objective is very high if an incorrect solution is found", { set.seed(123) I = 10 J = 5 K = 3 L = 8 M = 3 A = array(rnorm(I*2), c(I, 2)) B = array(rnorm(J*2), c(J, 2)) C = array(rnorm(K*2), c(K, 2)) D = array(rnorm(L*2), c(L, 2)) E = array(rnorm(M*2), c(M, 2)) df1 = reinflateTensor(A, B, C) df2 = reinflateTensor(A, D, E) datasets = list(df1, df2) modes = list(c(1,2,3), c(1,4,5)) Z = setupCMTFdata(datasets, modes, normalize=FALSE) result = cmtf_opt(Z, 2, initialization="random", max_iter=2) expect_gt(result$f, 0) }) test_that("allOutput=TRUE gives a list of expected length", { set.seed(123) I = 10 J = 5 K = 3 L = 8 M = 3 A = array(rnorm(I*2), c(I, 2)) B = array(rnorm(J*2), c(J, 2)) C = array(rnorm(K*2), c(K, 2)) D = array(rnorm(L*2), c(L, 2)) E = array(rnorm(M*2), c(M, 2)) df1 = reinflateTensor(A, B, C) df2 = reinflateTensor(A, D, E) datasets = list(df1, df2) modes = list(c(1,2,3), c(1,4,5)) Z = setupCMTFdata(datasets, modes, normalize=FALSE) results = cmtf_opt(Z, 2, initialization="random", nstart=3, max_iter=2, allOutput=TRUE) expect_equal(length(results), 3) }) test_that("the loss term per block has the correct length", { set.seed(123) I = 10 J = 5 K = 3 L = 8 M = 3 A = array(rnorm(I*2), c(I, 2)) B = array(rnorm(J*2), c(J, 2)) C = array(rnorm(K*2), c(K, 2)) D = array(rnorm(L*2), c(L, 2)) E = array(rnorm(M*2), c(M, 2)) df1 = reinflateTensor(A, B, C) df2 = reinflateTensor(A, D, E) datasets = list(df1, df2) modes = list(c(1,2,3), c(1,4,5)) Z = setupCMTFdata(datasets, modes, normalize=FALSE) model = cmtf_opt(Z, 1, max_iter=2) expect_true(length(model$f_per_block)==2) }) test_that("the sum of the the loss term per block is equal to the overall loss", { set.seed(123) I = 10 J = 5 K = 3 L = 8 M = 3 A = array(rnorm(I*2), c(I, 2)) B = array(rnorm(J*2), c(J, 2)) C = array(rnorm(K*2), c(K, 2)) D = array(rnorm(L*2), c(L, 2)) E = array(rnorm(M*2), c(M, 2)) df1 = reinflateTensor(A, B, C) df2 = reinflateTensor(A, D, E) datasets = list(df1, df2) modes = list(c(1,2,3), c(1,4,5)) Z = setupCMTFdata(datasets, modes, normalize=FALSE) model = cmtf_opt(Z, 1, max_iter=2) expect_equal(sum(model$f_per_block), model$f) }) test_that("running in parallel works", { skip_on_cran() set.seed(123) I = 10 J = 5 K = 3 L = 8 M = 3 A = array(rnorm(I*2), c(I, 2)) B = array(rnorm(J*2), c(J, 2)) C = array(rnorm(K*2), c(K, 2)) D = array(rnorm(L*2), c(L, 2)) E = array(rnorm(M*2), c(M, 2)) df1 = reinflateTensor(A, B, C) df2 = reinflateTensor(A, D, E) datasets = list(df1, df2) modes = list(c(1,2,3), c(1,4,5)) Z = setupCMTFdata(datasets, modes, normalize=FALSE) expect_no_error(cmtf_opt(Z,2,initialization="random", nstart=2, max_iter=2, numCores=2)) })