test_that("g is produced if any solution is found", { I = 108 J = 100 K = 10 df = array(rnorm(I*J*K), c(I,J,K)) datasets = list(df, df) modes = list(c(1,2,3), c(1,4,5)) Z = setupCMTFdata(datasets, modes) result = initializeACMTF(Z, 1, initialization="random") expect_no_error(acmtf_gradient(fac_to_vect(result), Z)) }) test_that("the size of g is correct in the two-tensor case", { I = 108 J = 100 K = 10 df = array(rnorm(I*J*K), c(I,J,K)) datasets = list(df, df) modes = list(c(1,2,3), c(1,4,5)) Z = setupCMTFdata(datasets, modes) result = initializeACMTF(Z, 1, initialization="random") g = acmtf_gradient(fac_to_vect(result), Z) expect_equal(length(g), I+J+K+J+K+2) }) test_that("the size of g is correct in the tensor-matrix case", { A = array(rnorm(108)) B = array(rnorm(100*2), c(100, 2)) C = array(rnorm(10)) df1 = reinflateTensor(A, B[,1], C) df2 = reinflateMatrix(A, B[,2]) datasets = list(df1, df2) modes = list(c(1,2,3), c(1,4)) Z = setupCMTFdata(datasets, modes, normalize=FALSE) result = initializeACMTF(Z, 1, initialization="random") g = acmtf_gradient(fac_to_vect(result), Z) expect_equal(length(g), 108+100+10+100+2) }) test_that("an error is thrown for 4-way or more", { I = 108 J = 100 K = 10 L = 5 df = array(rnorm(I*J*K*L), c(I,J,K,L)) datasets = list(df, df) modes = list(c(1,2,3,4), c(1,5,6,7)) Z = setupCMTFdata(datasets, modes) result = initializeCMTF(Z, 1, initialization="random") expect_error(acmtf_gradient(fac_to_vect(result), Z)) })