test_that("kNNDM works with geographical coordinates and prediction points", { sf::sf_use_s2(TRUE) aoi <- sf::st_as_sfc("POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))", crs="epsg:4326") tpoints <- sf::st_as_sfc("MULTIPOINT ((1 1), (1 2), (2 2), (2 3), (1 4), (5 4))", crs="epsg:4326") |> sf::st_cast("POINT") set.seed(1) predpoints <- suppressWarnings(sf::st_sample(aoi, 20, type="regular")) |> sf::st_set_crs("epsg:4326") set.seed(1) kout <- knndm(tpoints, predpoints=predpoints, k=2, maxp=0.8) expect_identical(round(kout$W,1), 121095.2) expect_identical(kout$method, "hierarchical") expect_identical(kout$q, 3L) }) test_that("kNNDM works with projected coordinates and prediction points", { aoi <- sf::st_as_sfc("POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))", crs="epsg:25832") tpoints <- sf::st_as_sfc("MULTIPOINT ((1 1), (1 2), (2 2), (2 3), (1 4), (5 4))", crs="epsg:25832") |> sf::st_cast("POINT") set.seed(1) predpoints <- sf::st_sample(aoi, 20, type="regular") |> sf::st_set_crs("epsg:25832") set.seed(1) kout <- knndm(tpoints, predpoints=predpoints, k=2, maxp=0.8, clustering = "kmeans") expect_identical(round(kout$W,4), 1.0919) expect_identical(kout$method, "kmeans") expect_identical(kout$q, 4L) }) test_that("kNNDM works without crs and prediction points", { aoi <- sf::st_as_sfc("POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))") tpoints <- sf::st_cast(sf::st_as_sfc("MULTIPOINT ((1 1), (1 2), (2 2), (2 3), (1 4), (5 4))"), "POINT") set.seed(1) predpoints <- sf::st_sample(aoi, 20, type="regular") set.seed(1) kout <- suppressWarnings(knndm(tpoints, predpoints=predpoints, k=2, maxp=0.8)) expect_identical(round(kout$W,6), 1.091896) expect_identical(kout$q, 3L) expect_warning(knndm(tpoints, predpoints=predpoints, k=2, maxp=0.8), "Missing CRS in training or prediction points. Assuming projected CRS.") }) test_that("kNNDM works with modeldomain and projected coordinates", { aoi <- sf::st_as_sfc("POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))", crs="epsg:25832") tpoints <- sf::st_as_sfc("MULTIPOINT ((1 1), (1 2), (2 2), (2 3), (1 4), (5 4))", crs="epsg:25832") |> sf::st_cast("POINT") set.seed(1) kout <- suppressMessages(knndm(tpoints, modeldomain = aoi, k=2, maxp=0.8, clustering = "kmeans")) expect_identical(round(kout$W,4), 1.2004) expect_identical(kout$method, "kmeans") expect_identical(kout$q, 4L) expect_message(knndm(tpoints, modeldomain = aoi, k=2, maxp=0.8, clustering = "kmeans"), "1000 prediction points are sampled from the modeldomain") }) test_that("kNNDM works with modeldomain and geographical coordinates", { sf::sf_use_s2(TRUE) aoi <- sf::st_as_sfc("POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))", crs="epsg:4326") tpoints <- sf::st_as_sfc("MULTIPOINT ((1 1), (1 2), (2 2), (2 3), (1 4), (5 4))", crs="epsg:4326") |> sf::st_cast("POINT") set.seed(1) kout <- suppressMessages(knndm(tpoints, modeldomain = aoi, k=2, maxp=0.8, clustering = "hierarchical")) expect_identical(round(kout$W,4), 133187.4275) expect_identical(kout$method, "hierarchical") expect_identical(kout$q, 3L) expect_message(knndm(tpoints, modeldomain = aoi, k=2, maxp=0.8, clustering = "hierarchical"), "1000 prediction points are sampled from the modeldomain") }) test_that("kNNDM works with modeldomain and no crs", { aoi <- sf::st_as_sfc("POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))") tpoints <- sf::st_as_sfc("MULTIPOINT ((1 1), (1 2), (2 2), (2 3), (1 4), (5 4))") |> sf::st_cast("POINT") set.seed(1) kout <- suppressWarnings(suppressMessages(knndm(tpoints, modeldomain = aoi, k=2, maxp=0.8))) expect_identical(round(kout$W,4), 1.2004) expect_identical(kout$method, "hierarchical") expect_identical(kout$q, 3L) expect_message(suppressWarnings(knndm(tpoints, modeldomain = aoi, k=2, maxp=0.8)), "1000 prediction points are sampled from the modeldomain") }) test_that("kNNDM works when no clustering is present", { sf::sf_use_s2(TRUE) aoi <- sf::st_as_sfc("POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))", crs="epsg:25832") set.seed(1) tpoints <- sf::st_sample(aoi, 10) set.seed(1) predpoints <- sf::st_sample(aoi, 20, type="regular") set.seed(1) kout <- suppressMessages(knndm(tpoints, predpoints = predpoints, k=2, maxp=0.8, clustering = "kmeans")) expect_equal(kout$q, "random CV") # for geographical coordinates set.seed(1) kout <- suppressMessages(knndm(sf::st_transform(tpoints,"epsg:4326"), predpoints = sf::st_transform(predpoints, "epsg:4326"), k=2, maxp=0.8, clustering = "hierarchical")) expect_equal(kout$q, "random CV") }) test_that("kNNDM works with many points and different configurations", { aoi <- sf::st_as_sfc("POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))", crs="epsg:25832") sample_area <- sf::st_as_sfc("POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))", crs="epsg:25832") set.seed(1) tpoints <- sf::st_sample(sample_area, 100) set.seed(1) predpoints <- sf::st_sample(aoi, 1000) ks <- 2:10 ps <- (1/ks)+0.1 tune_grid <- data.frame(ks=ks, ps=ps) set.seed(1) kout <- apply(tune_grid, 1, function(j) { knndm(tpoints, predpoints=predpoints, k=j[[1]], maxp=j[[2]], clustering = "kmeans") }) kout_W <- sapply(kout, function(x) round(x$W,3)) kout_Gij <- sapply(kout, function(x) round(x$Gij[1],4)) kout_Gjstar <- sapply(kout, function(x) round(x$Gjstar[1],4)) w_expected <- c(2.184, 2.286, 2.468, 2.554, 2.570, 2.634, 2.678, 2.694, 2.688) Gij_expected <- rep(1.3886, length(w_expected)) Gjstar_expected <- c(1.0981, 1.0981, 0.5400, 0.3812, 0.2505, 0.3812, 0.3099, 0.3099, 0.3812) expect_identical(round(kout_W,3), w_expected) expect_identical(round(kout_Gij,4), Gij_expected) expect_identical(round(Gjstar_expected,4), Gjstar_expected) }) test_that("kNNDM recognizes erroneous input", { sf::sf_use_s2(TRUE) aoi <- sf::st_as_sfc("POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))", crs="epsg:25832") tpoints <- sf::st_as_sfc("MULTIPOINT ((1 1), (1 2), (2 2), (2 3), (1 4), (5 4))", crs="epsg:25832") |> sf::st_cast("POINT") set.seed(1) predpoints <- sf::st_sample(aoi, 20) # maxp to small expect_error(knndm(tpoints, predpoints=predpoints, k=2, maxp=0.4)) # k larger than number of tpoints expect_error(knndm(tpoints, predpoints=predpoints, k=20, maxp=0.8)) # different crs of tpoints and predpoints expect_error(knndm(tpoints, predpoints=sf::st_transform(predpoints, "epsg:25833"), k=2, maxp=0.8)) # different crs of tpoints and modeldomain expect_error(knndm(tpoints, modeldomain=sf::st_transform(aoi, "epsg:25833"), k=2, maxp=0.8)) # using kmeans with geographical coordinates expect_error(knndm(sf::st_transform(tpoints,"epsg:4326"), predpoints=sf::st_transform(predpoints, "epsg:4326"), clustering="kmeans")) }) test_that("kNNDM yields the expected results with SpatRast modeldomain", { set.seed(1234) # prepare sample data data(cookfarm) dat <- terra::aggregate(cookfarm[,c("DEM","TWI", "NDRE.M", "Easting", "Northing","VW")], by=list(as.character(cookfarm$SOURCEID)),mean) pts <- dat[,-1] pts <- sf::st_as_sf(pts,coords=c("Easting","Northing")) sf::st_crs(pts) <- 26911 studyArea <- terra::rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST")) pts <- sf::st_transform(pts, crs = sf::st_crs(studyArea)) knndm_folds <- knndm(pts, modeldomain = studyArea) expect_equal(as.numeric(knndm(pts, modeldomain = studyArea)$Gjstar[40]), 61.935505) }) test_that("kNNDM works in feature space with kmeans clustering and raster as modeldomain", { set.seed(1234) # prepare sample data data(cookfarm) dat <- terra::aggregate(cookfarm[,c("DEM","TWI", "NDRE.M", "Easting", "Northing","VW")], by=list(as.character(cookfarm$SOURCEID)),mean) pts <- dat[,-1] pts <- sf::st_as_sf(pts,coords=c("Easting","Northing")) sf::st_crs(pts) <- 26911 studyArea <- terra::rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST")) pts <- sf::st_transform(pts, crs = sf::st_crs(studyArea)) studyArea <- studyArea[[names(studyArea) %in% names(pts)]] train_points <- pts[,names(pts) %in% names(studyArea)] knndm_folds <- knndm(train_points, modeldomain = studyArea, space="feature", clustering = "kmeans") expect_equal(round(as.numeric(knndm_folds$Gjstar[40]),4), 0.2132) }) test_that("kNNDM works in feature space with hierarchical clustering and raster as modeldomain", { set.seed(1234) # prepare sample data data(cookfarm) dat <- terra::aggregate(cookfarm[,c("DEM","TWI", "NDRE.M", "Easting", "Northing","VW")], by=list(as.character(cookfarm$SOURCEID)),mean) pts <- dat[,-1] pts <- sf::st_as_sf(pts,coords=c("Easting","Northing")) sf::st_crs(pts) <- 26911 studyArea <- terra::rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST")) pts <- sf::st_transform(pts, crs = sf::st_crs(studyArea)) studyArea <- studyArea[[names(studyArea) %in% names(pts)]] tpoints <- pts[,names(pts) %in% names(studyArea)] knndm_folds <- knndm(tpoints, modeldomain = studyArea, space="feature", clustering = "hierarchical") expect_equal(round(as.numeric(knndm_folds$Gjstar[40]),4), 0.2132) }) test_that("kNNDM works in feature space with clustered training points", { skip_if_not_installed("PCAmixdata") set.seed(1234) data(splotdata) splotdata <- splotdata[splotdata$Country == "Chile",] predictors <- c("bio_1", "bio_4", "bio_5", "bio_6", "bio_8", "bio_9", "bio_12", "bio_13", "bio_14", "bio_15", "elev") trainDat <- sf::st_drop_geometry(splotdata) predictors_sp <- terra::rast(system.file("extdata", "predictors_chile.tif",package="CAST")) knndm_folds <- knndm(trainDat[,predictors], modeldomain = predictors_sp, space = "feature", clustering="kmeans", k=4, maxp=0.8) expect_equal(round(as.numeric(knndm_folds$Gjstar[40]),4), 0.8287) }) test_that("kNNDM works in feature space with categorical variables and predpoints", { set.seed(1234) # prepare sample data data(cookfarm) dat <- terra::aggregate(cookfarm[,c("DEM","TWI", "NDRE.M", "Easting", "Northing","VW")], by=list(as.character(cookfarm$SOURCEID)),mean) pts <- dat[,-1] pts <- sf::st_as_sf(pts,coords=c("Easting","Northing")) sf::st_crs(pts) <- 26911 studyArea <- terra::rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST")) pts <- sf::st_transform(pts, crs = sf::st_crs(studyArea)) studyArea <- studyArea[[names(studyArea) %in% names(pts)]] prediction_points <- terra::spatSample(studyArea, 1000, "regular") train_points <- pts[,names(pts) %in% names(studyArea)] prediction_points$fct <- factor(sample(LETTERS[1:4], nrow(prediction_points), replace=TRUE)) train_points$fct <- factor(sample(LETTERS[1:4], nrow(pts), replace=TRUE)) knndm_folds <- knndm(tpoints=train_points, predpoints = prediction_points, space="feature", clustering = "hierarchical") expect_equal(round(as.numeric(knndm_folds$Gjstar[40]),3), 0.057) }) test_that("kNNDM works in feature space with clustered training points, categorical features ", { skip_if_not_installed("PCAmixdata") set.seed(1234) predictor_stack <- terra::rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST")) predictors <- c("DEM","TWI", "NDRE.M", "Easting", "Northing", "fct") predictor_stack$fct <- factor(c(rep(LETTERS[1], terra::ncell(predictor_stack)/2), rep(LETTERS[2], terra::ncell(predictor_stack)/2))) predictor_stack <- predictor_stack[[predictors]] studyArea <- predictor_stack studyArea[!is.na(studyArea)] <- 1 studyArea <- terra::as.polygons(studyArea, values = FALSE, na.all = TRUE) |> sf::st_as_sf() |> sf::st_union() pts <- clustered_sample(studyArea, 30, 5, 60) pts <- sf::st_transform(pts, crs = sf::st_crs(studyArea)) pts <- terra::extract(predictor_stack, terra::vect(pts), ID=FALSE) knndm_folds_kproto <- knndm(tpoints=pts, modeldomain = predictor_stack, space="feature", clustering = "kmeans") knndm_folds_hclust <- knndm(tpoints=pts, modeldomain = predictor_stack, space="feature", clustering = "hierarchical") expect_equal(round(as.numeric(knndm_folds_kproto$Gjstar[20]),3), 0.077) expect_equal(round(as.numeric(knndm_folds_hclust$Gjstar[20]),3), 0.078) }) test_that("kNNDM works in feature space with Mahalanobis distance", { data(splotdata) splotdata <- splotdata[splotdata$Country == "Chile",] predictors <- c("bio_1", "bio_4", "bio_5", "bio_6", "bio_8", "bio_9", "bio_12", "bio_13", "bio_14", "bio_15", "elev") trainDat <- sf::st_drop_geometry(splotdata) predictors_sp <- terra::rast(system.file("extdata", "predictors_chile.tif",package="CAST")) set.seed(1234) knndm_folds <- knndm(trainDat[,predictors], modeldomain = predictors_sp, space = "feature", clustering="kmeans", k=4, maxp=0.8, useMD=TRUE) expect_equal(round(as.numeric(knndm_folds$Gjstar[40]),4), 1.1258) }) test_that("kNNDM works in feature space with Mahalanobis distance without clustering", { set.seed(1234) # prepare sample data data(cookfarm) dat <- terra::aggregate(cookfarm[,c("DEM","TWI", "NDRE.M", "Easting", "Northing","VW")], by=list(as.character(cookfarm$SOURCEID)),mean) pts <- dat[,-1] pts <- sf::st_as_sf(pts,coords=c("Easting","Northing")) sf::st_crs(pts) <- 26911 studyArea <- terra::rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST")) pts <- sf::st_transform(pts, crs = sf::st_crs(studyArea)) studyArea <- studyArea[[names(studyArea) %in% names(pts)]] train_points <- pts[,names(pts) %in% names(studyArea)] expect_message(knndm(train_points, modeldomain = studyArea, space="feature", clustering = "kmeans", useMD = TRUE), "Gij <= Gj; a random CV assignment is returned") expect_message(knndm(train_points, modeldomain = studyArea, space="feature", clustering = "hierarchical", useMD = TRUE), "Gij <= Gj; a random CV assignment is returned") })