test_that("global_validation correctly handles missing predictions", { skip_if_not_installed("randomForest") data("iris") set.seed(123) ctrl <- caret::trainControl(method="cv") model <- caret::train(iris[,c("Sepal.Width", "Petal.Length", "Petal.Width")], iris[,c("Sepal.Length")], method="rf", trControl=ctrl, ntree=10) expect_error(global_validation(model)) }) test_that("global_validation works with caret regression", { skip_if_not_installed("randomForest") data("iris") set.seed(123) ctrl <- caret::trainControl(method="cv", savePredictions="final") model <- caret::train(iris[,c("Sepal.Width", "Petal.Length", "Petal.Width")], iris[,c("Sepal.Length")], method="rf", trControl=ctrl, ntree=10) expect_equal(global_validation(model), c("RMSE"=0.3307870, "Rsquared"=0.8400544, "MAE"=0.2621827), tolerance = 0.02) }) test_that("global_validation works with caret classification", { skip_if_not_installed("randomForest") data("iris") set.seed(123) ctrl <- caret::trainControl(method="cv", savePredictions="final") model <- caret::train(iris[,c("Sepal.Width", "Petal.Length", "Petal.Width", "Sepal.Length")], iris[,c("Species")], method="rf", trControl=ctrl, ntree=10) expect_equal(global_validation(model)[1:2], c("Accuracy"=0.96, "Kappa"=0.94), tolerance = 0.02) }) test_that("global_validation works with CreateSpacetimeFolds", { skip_if_not_installed("randomForest") data("iris") set.seed(123) iris$folds <- sample(rep(1:10, ceiling(nrow(iris)/10)), nrow(iris)) indices <- CreateSpacetimeFolds(iris, "folds") ctrl <- caret::trainControl(method="cv", savePredictions="final", index = indices$index) model <- caret::train(iris[,c("Sepal.Width", "Petal.Length", "Petal.Width", "Sepal.Length")], iris[,c("Species")], method="rf", trControl=ctrl, ntree=10) expect_equal(global_validation(model)[1:2], c("Accuracy"=0.96, "Kappa"=0.94), tolerance = 0.02) })