loaddata <- function() { # prepare sample data: data(cookfarm) dat <- aggregate(cookfarm[,c("VW","Easting","Northing")],by=list(as.character(cookfarm$SOURCEID)),mean) pts <- sf::st_as_sf(dat,coords=c("Easting","Northing")) pts$ID <- 1:nrow(pts) set.seed(100) pts <- pts[1:30,] studyArea <- terra::rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST"))[[1:8]] trainDat <- terra::extract(studyArea,pts,na.rm=FALSE) trainDat <- merge(trainDat,pts,by.x="ID",by.y="ID") # train a model: set.seed(100) variables <- c("DEM","NDRE.Sd","TWI") ctrl <- caret::trainControl(method="cv",number=5,savePredictions=T) model <- caret::train(trainDat[,which(names(trainDat)%in%variables)], trainDat$VW, method="rf", importance=TRUE, tuneLength=1, trControl=ctrl) data <- list( studyArea = studyArea, trainDat = trainDat, variables = variables, model = model ) return(data) } test_that("AOA works in default: used with raster data and a trained model", { skip_if_not_installed("randomForest") dat <- loaddata() # calculate the AOA of the trained model for the study area: AOA <- aoa(dat$studyArea, dat$model, verbose = F) #test threshold: expect_equal(as.numeric(round(AOA$parameters$threshold,5)), 0.38986) #test number of pixels within AOA: expect_equal(sum(terra::values(AOA$AOA)==1,na.rm=TRUE), 2936) # test trainDI expect_equal(AOA$parameters$trainDI, c(0.09043580, 0.14046341, 0.16584582, 0.57617177, 0.26840303, 0.14353894, 0.19768329, 0.24022059, 0.06832037, 0.29150668, 0.18471625, 0.57617177, 0.12344463, 0.09043580, 0.14353894, 0.26896008, 0.22713731, 0.24022059, 0.20388725, 0.06832037, 0.23604264, 0.20388725, 0.91513568, 0.09558666, 0.14046341, 0.16214832, 0.37107762, 0.16214832, 0.18471625, 0.12344463)) # test summary statistics of the DI expect_equal(as.vector(summary(terra::values(AOA$DI))), c("Min. :0.0000 ", "1st Qu.:0.1329 ", "Median :0.2052 ", "Mean :0.2858 ", "3rd Qu.:0.3815 ", "Max. :4.4485 ", "NA's :1993 ")) }) test_that("AOA works without a trained model", { skip_if_not_installed("randomForest") dat <- loaddata() AOA <- aoa(dat$studyArea,train=dat$trainDat,variables=dat$variables, verbose = F) #test threshold: expect_equal(as.numeric(round(AOA$parameters$threshold,5)), 0.52872) #test number of pixels within AOA: expect_equal(sum(terra::values(AOA$AOA)==1,na.rm=TRUE), 3377) # test summary statistics of the DI expect_equal(as.vector(summary(terra::values(AOA$DI))), c("Min. :0.0000 ", "1st Qu.:0.1759 ", "Median :0.2642 ", "Mean :0.3109 ", "3rd Qu.:0.4051 ", "Max. :2.6631 ", "NA's :1993 ")) }) test_that("AOA (including LPD) works with raster data and a trained model", { skip_if_not_installed("randomForest") dat <- loaddata() # calculate the AOA of the trained model for the study area: AOA <- aoa(dat$studyArea, dat$model, LPD = TRUE, maxLPD = 1, verbose = F) #test threshold: expect_equal(as.numeric(round(AOA$parameters$threshold,5)), 0.38986) #test number of pixels within AOA: expect_equal(sum(terra::values(AOA$AOA)==1,na.rm=TRUE), 2936) #test trainLPD expect_equal(AOA$parameters$trainLPD, c(3, 4, 6, 0, 7, 6, 2, 1, 5, 3, 4, 0, 1, 2, 6, 5, 4, 4, 5, 7, 3, 4, 0, 2, 3, 6, 1, 7, 3, 2)) # test summary statistics of the DI expect_equal(as.vector(summary(terra::values(AOA$DI))), c("Min. :0.0000 ", "1st Qu.:0.1329 ", "Median :0.2052 ", "Mean :0.2858 ", "3rd Qu.:0.3815 ", "Max. :4.4485 ", "NA's :1993 ")) }) test_that("AOA (inluding LPD) works without a trained model", { skip_if_not_installed("randomForest") dat <- loaddata() AOA <- aoa(dat$studyArea,train=dat$trainDat,variables=dat$variables, LPD = TRUE, maxLPD = 1, verbose = F) #test threshold: expect_equal(as.numeric(round(AOA$parameters$threshold,5)), 0.52872) #test number of pixels within AOA: expect_equal(sum(terra::values(AOA$AOA)==1,na.rm=TRUE), 3377) # test trainLPD expect_equal(AOA$parameters$trainLPD, c(7, 9, 12, 1, 12, 12, 4, 2, 8, 10, 6, 1, 3,4, 11, 9, 9, 7, 5, 5, 6, 5, 0, 5, 9, 8, 4, 11, 3,2)) # test summary statistics of the DI expect_equal(as.vector(summary(terra::values(AOA$DI))), c("Min. :0.0000 ", "1st Qu.:0.1759 ", "Median :0.2642 ", "Mean :0.3109 ", "3rd Qu.:0.4051 ", "Max. :2.6631 ", "NA's :1993 ")) })