loaddata <- function() { # prepare sample data: data("cookfarm") dat <- aggregate(cookfarm[,c("VW","Easting","Northing")],by=list(as.character(cookfarm$SOURCEID)),mean) pts <- sf::st_as_sf(dat,coords=c("Easting","Northing")) pts$ID <- 1:nrow(pts) set.seed(100) pts <- pts[1:30,] studyArea <- terra::rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST"))[[1:8]] trainDat <- terra::extract(studyArea,pts,na.rm=FALSE) trainDat <- merge(trainDat,pts,by.x="ID",by.y="ID") # train a model: set.seed(100) variables <- c("DEM","NDRE.Sd","TWI") model <- caret::train(trainDat[,which(names(trainDat)%in%variables)], trainDat$VW, method="rf", importance=TRUE, tuneLength=1, trControl=caret::trainControl(method="cv",number=5,savePredictions=T)) data <- list( studyArea = studyArea, trainDat = trainDat, variables = variables, model = model ) return(data) } test_that("trainDI works in default for a trained model", { skip_if_not_installed("randomForest") dat <- loaddata() #...then calculate the DI of the trained model: DI <- trainDI(model=dat$model, verbose = F) #test threshold: expect_equal(as.numeric(round(DI$threshold,5)), 0.38986) # test trainDI expect_equal(DI$trainDI, c(0.09043580, 0.14046341, 0.16584582, 0.57617177, 0.26840303, 0.14353894, 0.19768329, 0.24022059, 0.06832037, 0.29150668, 0.18471625, 0.57617177, 0.12344463, 0.09043580, 0.14353894, 0.26896008, 0.22713731, 0.24022059, 0.20388725, 0.06832037, 0.23604264, 0.20388725, 0.91513568, 0.09558666, 0.14046341, 0.16214832, 0.37107762, 0.16214832, 0.18471625, 0.12344463)) # test summary statistics of the DI expect_equal(as.numeric(colMeans(DI$train)), c(795.4426351,4.0277978,0.2577245)) }) test_that("trainDI (with LPD = TRUE) works in default for a trained model", { skip_if_not_installed("randomForest") dat <- loaddata() #...then calculate the DI of the trained model: DI <- trainDI(model=dat$model, LPD = TRUE, verbose = F) #test threshold: expect_equal(as.numeric(round(DI$threshold,5)), 0.38986) #test trainLPD expect_identical(DI$trainLPD, as.integer(c(3, 4, 6, 0, 7, 6, 2, 1, 5, 3, 4, 0, 1, 2, 6, 5, 4, 4, 5, 7, 3, 4, 0, 2, 3, 6, 1, 7, 3, 2))) # test summary statistics of the DI expect_equal(as.numeric(colMeans(DI$train)), c(795.4426351,4.0277978,0.2577245)) })