test_that("ffs works with default arguments and the splotopen dataset (numerical only)",{ data("splotdata") splotdata = splotdata |> sf::st_drop_geometry() set.seed(1) selection = ffs(predictors = splotdata[,6:12], response = splotdata$Species_richness, seed = 1, verbose = FALSE, ntree = 5, tuneLength = 1) expect_identical(selection$selectedvars, c("bio_6", "bio_12", "bio_5", "bio_4")) expect_identical(selection$metric, "RMSE") expect_identical(selection$maximize, FALSE) }) test_that("ffs works with default arguments and the splotopen dataset (include categorial)",{ data("splotdata") splotdata = splotdata |> sf::st_drop_geometry() set.seed(1) selection = ffs(predictors = splotdata[,c(4,6:12)], response = splotdata$Species_richness, verbose = FALSE, seed = 1, ntree = 5, tuneLength = 1) expect_identical(selection$selectedvars, c("bio_6", "bio_12", "Biome","bio_1" , "bio_5")) expect_identical(selection$metric, "RMSE") expect_identical(selection$maximize, FALSE) }) test_that("ffs works for classification with default arguments",{ data("splotdata") splotdata = splotdata |> sf::st_drop_geometry() splotdata$Biome = droplevels(splotdata$Biome) set.seed(1) selection = ffs(predictors = splotdata[,c(6:12)], response = splotdata$Biome, verbose = FALSE, seed = 1, ntree = 5, tuneLength = 1) expect_identical(selection$selectedvars, c("bio_4", "bio_8", "bio_12", "bio_9")) expect_identical(selection$metric, "Accuracy") expect_identical(selection$maximize, TRUE) }) #test_that("ffs works for withinSE = TRUE",{ # data("splotdata") # splotdata = splotdata |> sf::st_drop_geometry() # splotdata$Biome = droplevels(splotdata$Biome) # set.seed(1) # selection = ffs(predictors = splotdata[,c(6:16)], # response = splotdata$Biome, # seed = 1, # verbose = FALSE, # ntree = 5, # withinSE = TRUE, # tuneLength = 1) # expect_identical(selection$selectedvars, c("bio_4", "bio_8", "bio_12", # "bio_13","bio_14", "bio_5")) #}) ## Iris tests that should fail if implemented new test_that("ffs works with default arguments and the iris dataset",{ data(iris) set.seed(1) selection = ffs(predictors = iris[,1:4], response = iris$Species, seed = 1) expect_identical(selection$selectedvars, c("Petal.Length", "Petal.Width", "Sepal.Width")) expect_equal(selection$selectedvars_perf, c(0.9530141, 0.9544820, 0.9544820), tolerance = 0.005) }) test_that("ffs works with globalVal = TRUE", { data(iris) set.seed(1) selection = ffs(predictors = iris[,1:4], response = iris$Species, seed = 1, globalval = TRUE) expect_identical(selection$selectedvars, c("Petal.Length", "Petal.Width", "Sepal.Width")) expect_equal(selection$selectedvars_perf, c("Accuracy" = 0.9530792,"Accuracy" = 0.9545455,"Accuracy" = 0.9545455 ), tolerance = 0.005) }) test_that("ffs works with withinSE = TRUE", { data(iris) set.seed(1) selection = ffs(predictors = iris[,1:4], response = iris$Species, seed = 1, withinSE = TRUE) expect_identical(selection$selectedvars, c("Petal.Length", "Petal.Width")) expect_equal(selection$selectedvars_perf, c(0.9530141), tolerance = 0.005) }) test_that("ffs fails with minvar set to maximum", { data(iris) set.seed(1) expect_error(ffs(predictors = iris[,1:4], response = iris$Species, seed = 1, minVar = 4), regexp = ".*undefined columns selected") })