test_that("errorProfiles works in default settings", { skip_on_os("mac", arch = "aarch64") data(splotdata) splotdata <- sf::st_drop_geometry(splotdata) predictors <- terra::rast(system.file("extdata","predictors_chile.tif", package="CAST")) set.seed(100) model <- caret::train(splotdata[,6:16], splotdata$Species_richness, ntree = 10, trControl = caret::trainControl(method = "cv", savePredictions = TRUE)) AOA <- CAST::aoa(predictors, model,verbose=F) # DI ~ error errormodel_DI <- CAST::errorProfiles(model, AOA, variable = "DI") expected_error_DI = terra::predict(AOA$DI, errormodel_DI) #test model fit: expect_equal(round(as.numeric(summary(errormodel_DI$fitted.values)),2), c(14.25, 14.34, 15.21, 17.23, 18.70, 27.46)) # test model predictions expect_equal(as.vector( summary(terra::values(expected_error_DI))), c("Min. :14.26 ", "1st Qu.:27.46 ", "Median :27.46 ", "Mean :26.81 ", "3rd Qu.:27.46 ","Max. :27.47 ", "NA's :17678 ")) }) test_that("errorProfiles works in with LPD", { skip_on_os("mac", arch = "aarch64") data(splotdata) splotdata <- sf::st_drop_geometry(splotdata) predictors <- terra::rast(system.file("extdata","predictors_chile.tif", package="CAST")) set.seed(100) model <- caret::train(splotdata[,6:16], splotdata$Species_richness, ntree = 10, trControl = caret::trainControl(method = "cv", savePredictions = TRUE)) AOA <- CAST::aoa(predictors, model, LPD = TRUE, maxLPD = 1,verbose=F) errormodel_LPD <- CAST::errorProfiles(model, AOA, variable = "LPD") expected_error_LPD = terra::predict(AOA$LPD, errormodel_LPD) #test model fit: expect_equal(round(as.numeric(summary(errormodel_LPD$fitted.values)),2), c(16.36, 16.36, 16.36, 16.36, 16.36, 16.36)) # test model predictions expect_equal(as.vector(summary(terra::values(expected_error_LPD))), c("Min. :16.36 ", "1st Qu.:16.36 ", "Median :16.36 ", "Mean :16.36 ", "3rd Qu.:16.36 ", "Max. :16.36 ", "NA's :17678 ")) }) test_that("errorProfiles works for multiCV", { skip_on_os("mac", arch = "aarch64") data(splotdata) splotdata <- sf::st_drop_geometry(splotdata) predictors <- terra::rast(system.file("extdata","predictors_chile.tif", package="CAST")) set.seed(100) model <- caret::train(splotdata[,6:16], splotdata$Species_richness, ntree = 10, trControl = caret::trainControl(method = "cv", savePredictions = TRUE)) AOA <- CAST::aoa(predictors, model,verbose=F) # with multiCV = TRUE (for DI ~ error) set.seed(100) errormodel_DI = suppressWarnings(errorProfiles(model, AOA, multiCV = TRUE, length.out = 3)) expected_error_DI = terra::predict(AOA$DI, errormodel_DI) #test model fit: expect_equal(round(as.numeric(summary(errormodel_DI$fitted.values)),2), c(12.53, 17.21, 26.80, 26.19, 35.28, 35.30)) # test model predictions expect_equal(as.vector( summary(terra::values(expected_error_DI))), c("Min. :13.11 ", "1st Qu.:32.58 ", "Median :35.05 ", "Mean :32.54 ", "3rd Qu.:35.30 ", "Max. :35.30 ", "NA's :17678 ")) })