# Testing variable selection methods ## Gamma regression test_that("Testing VS methods gamma", { library(BranchGLM) set.seed(8621) ### Making sure x and beta are positive to use inverse link x <- sapply(rep(1, 10), rexp, n = 1000, simplify = TRUE) x <- cbind(1, x) beta <- rexp(11, rate = 1) y <- rgamma(n = 1000, shape = 1, scale = 1 / (x %*% beta)) Data <- cbind(y, x[,-1]) |> as.data.frame() ### Fitting upper model Fit <- BranchGLM(y ~ ., data = Data, family = "gamma", link = "inverse") ### Exact Variable Selection BB <- VariableSelection(Fit, type = "Branch AND BOUnd", bestmodels = 1, metric = "AiC") BBB <- VariableSelection(Fit, type = "BackWArD Branch AND BOUnd", bestmodels = 1, metric = "aic") SBB <- VariableSelection(Fit, type = "SWITCH Branch AND BOUnd", bestmodels = 1, metric = "AIC") ### Checking results expect_equal(coef(BB), coef(BBB)) expect_equal(coef(BB), coef(SBB)) ### checking GLM fitting ind <- which(coef(BB) != 0) myCoefs <- rep(0, ncol(x)) names(myCoefs) <- rownames(coef(BB)) tempFit <- BranchGLM.fit(x[, ind, drop = FALSE], y, offset = Fit$offset, family = Fit$family, link = Fit$link) myCoefs[ind] <- tempFit$coefficients[, 1] #### Testing results expect_equal(coef(BB)[, 1], myCoefs, tolerance = 1e-4) ### Checking that forward and backward are the same as step #### VariableSelection ##### forward forward <- VariableSelection(Fit, type = "FORWARD", bestmodels = 1, metric = "AIC") forwardCoef <- coef(forward) forwardCoef <- forwardCoef[forwardCoef != 0, ] forwardCoef <- forwardCoef[order(names(forwardCoef))] ##### backward backward <- VariableSelection(Fit, type = "backWARD", bestmodels = 1, metric = "AIC") backwardCoef <- coef(backward) backwardCoef <- backwardCoef[backwardCoef != 0, ] backwardCoef <- backwardCoef[order(names(backwardCoef))] #### step fullmodel <- glm(y ~ ., data = Data, family = Gamma(link = "inverse")) forwardStep <- step(glm(y ~ 1, data = Data, family = Gamma(link = "inverse")), direction = "forward", trace = 0, scope = formula(fullmodel)) forwardCoefGLM <- coef(forwardStep) forwardCoefGLM <- forwardCoefGLM[order(names(forwardCoefGLM))] backwardStep <- step(fullmodel, direction = "backward", trace = 0) backwardCoefGLM <- coef(backwardStep) backwardCoefGLM <- backwardCoefGLM[order(names(backwardCoefGLM))] #### Checking results expect_equal(forwardCoef, forwardCoefGLM, tolerance = 1e-2) expect_equal(backwardCoef, backwardCoefGLM, tolerance = 1e-2) }) ## Gaussian test_that("Testing VS methods gaussian", { library(BranchGLM) set.seed(8621) x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE) x <- cbind(1, x) beta <- rnorm(11) y <- rnorm(n = 1000, mean = x %*% beta, sd = 2) Data <- cbind(y, x[,-1]) |> as.data.frame() ## Fitting upper model Fit <- BranchGLM(y ~ ., data = Data, family = "gaussian", link = "identity") ### Exact Variable Selection BB <- VariableSelection(Fit, type = "Branch AND BOUnd", bestmodels = 1, metric = "AiC") BBB <- VariableSelection(Fit, type = "BackWArD Branch AND BOUnd", bestmodels = 1, metric = "aic") SBB <- VariableSelection(Fit, type = "SWITCH Branch AND BOUnd", bestmodels = 1, metric = "AIC") ### Checking results expect_equal(coef(BB), coef(BBB)) expect_equal(coef(BB), coef(SBB)) ### checking GLM fitting ind <- which(coef(BB) != 0) myCoefs <- rep(0, ncol(x)) names(myCoefs) <- rownames(coef(BB)) tempFit <- BranchGLM.fit(x[, ind, drop = FALSE], y, offset = Fit$offset, family = Fit$family, link = Fit$link) myCoefs[ind] <- tempFit$coefficients[, 1] #### Testing results expect_equal(coef(BB)[, 1], myCoefs, tolerance = 1e-4) ### Checking that forward and backward are the same as step #### VariableSelection ##### forward forward <- VariableSelection(Fit, type = "FORWARD", bestmodels = 1, metric = "AIC") forwardCoef <- coef(forward) forwardCoef <- forwardCoef[forwardCoef != 0, ] forwardCoef <- forwardCoef[order(names(forwardCoef))] ##### backward backward <- VariableSelection(Fit, type = "backWARD", bestmodels = 1, metric = "AIC") backwardCoef <- coef(backward) backwardCoef <- backwardCoef[backwardCoef != 0, ] backwardCoef <- backwardCoef[order(names(backwardCoef))] #### step fullmodel <- glm(y ~ ., data = Data, family = gaussian(link = "identity")) forwardStep <- step(glm(y ~ 1, data = Data, family = gaussian(link = "identity")), direction = "forward", trace = 0, scope = formula(fullmodel)) forwardCoefGLM <- coef(forwardStep) forwardCoefGLM <- forwardCoefGLM[order(names(forwardCoefGLM))] backwardStep <- step(fullmodel, direction = "backward", trace = 0) backwardCoefGLM <- coef(backwardStep) backwardCoefGLM <- backwardCoefGLM[order(names(backwardCoefGLM))] #### Checking results expect_equal(forwardCoef, forwardCoefGLM, tolerance = 1e-2) expect_equal(backwardCoef, backwardCoefGLM, tolerance = 1e-2) }) ## Binomial ### Probit test_that("Testing VS methods binomial", { library(BranchGLM) set.seed(8621) x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE) x <- cbind(1, x) beta <- rnorm(11) y <- rbinom(n = 1000, size = 1, p = pnorm(x %*% beta + rnorm(1000, sd = 3))) Data <- cbind(y, x[,-1]) |> as.data.frame() ## Fitting upper model Fit <- BranchGLM(y ~ ., data = Data, family = "binomial", link = "probit") ### Exact Variable Selection BB <- VariableSelection(Fit, type = "Branch AND BOUnd", bestmodels = 1, metric = "AiC") BBB <- VariableSelection(Fit, type = "BackWArD Branch AND BOUnd", bestmodels = 1, metric = "aic") SBB <- VariableSelection(Fit, type = "SWITCH Branch AND BOUnd", bestmodels = 1, metric = "AIC") ### Checking results expect_equal(coef(BB), coef(BBB)) expect_equal(coef(BB), coef(SBB)) ### checking GLM fitting ind <- which(coef(BB) != 0) myCoefs <- rep(0, ncol(x)) names(myCoefs) <- rownames(coef(BB)) tempFit <- BranchGLM.fit(x[, ind, drop = FALSE], y, offset = Fit$offset, family = Fit$family, link = Fit$link) myCoefs[ind] <- tempFit$coefficients[, 1] #### Testing results expect_equal(coef(BB)[, 1], myCoefs, tolerance = 1e-4) ### Checking that forward and backward are the same as step #### VariableSelection ##### forward forward <- VariableSelection(Fit, type = "FORWARD", bestmodels = 1, metric = "AIC") forwardCoef <- coef(forward) forwardCoef <- forwardCoef[forwardCoef != 0, ] forwardCoef <- forwardCoef[order(names(forwardCoef))] ##### backward backward <- VariableSelection(Fit, type = "backWARD", bestmodels = 1, metric = "AIC") backwardCoef <- coef(backward) backwardCoef <- backwardCoef[backwardCoef != 0, ] backwardCoef <- backwardCoef[order(names(backwardCoef))] #### step fullmodel <- glm(y ~ ., data = Data, family = binomial(link = "probit")) forwardStep <- step(glm(y ~ 1, data = Data, family = binomial(link = "probit")), direction = "forward", trace = 0, scope = formula(fullmodel)) forwardCoefGLM <- coef(forwardStep) forwardCoefGLM <- forwardCoefGLM[order(names(forwardCoefGLM))] backwardStep <- step(fullmodel, direction = "backward", trace = 0) backwardCoefGLM <- coef(backwardStep) backwardCoefGLM <- backwardCoefGLM[order(names(backwardCoefGLM))] #### Checking results expect_equal(forwardCoef, forwardCoefGLM, tolerance = 1e-2) expect_equal(backwardCoef, backwardCoefGLM, tolerance = 1e-2) }) ### cloglog test_that("Testing VS methods binomial", { library(BranchGLM) set.seed(8621) x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE) x <- cbind(1, x) beta <- rnorm(11) y <- rbinom(n = 1000, size = 1, p = 1 - exp(-exp(x %*% beta + rnorm(1000, sd = 5)))) Data <- cbind(y, x[,-1]) |> as.data.frame() ## Fitting upper model Fit <- BranchGLM(y ~ ., data = Data, family = "binomial", link = "cloglog") ### Exact Variable Selection BB <- VariableSelection(Fit, type = "Branch AND BOUnd", bestmodels = 1, metric = "AiC") BBB <- VariableSelection(Fit, type = "BackWArD Branch AND BOUnd", bestmodels = 1, metric = "aic") SBB <- VariableSelection(Fit, type = "SWITCH Branch AND BOUnd", bestmodels = 1, metric = "AIC") ### Checking results expect_equal(coef(BB), coef(BBB)) expect_equal(coef(BB), coef(SBB)) ### checking GLM fitting ind <- which(coef(BB) != 0) myCoefs <- rep(0, ncol(x)) names(myCoefs) <- rownames(coef(BB)) tempFit <- BranchGLM.fit(x[, ind, drop = FALSE], y, offset = Fit$offset, family = Fit$family, link = Fit$link) myCoefs[ind] <- tempFit$coefficients[, 1] #### Testing results expect_equal(coef(BB)[, 1], myCoefs, tolerance = 1e-4) ### Checking that forward and backward are the same as step #### VariableSelection ##### forward forward <- VariableSelection(Fit, type = "FORWARD", bestmodels = 1, metric = "AIC") forwardCoef <- coef(forward) forwardCoef <- forwardCoef[forwardCoef != 0, ] forwardCoef <- forwardCoef[order(names(forwardCoef))] ##### backward backward <- VariableSelection(Fit, type = "backWARD", bestmodels = 1, metric = "AIC") backwardCoef <- coef(backward) backwardCoef <- backwardCoef[backwardCoef != 0, ] backwardCoef <- backwardCoef[order(names(backwardCoef))] #### step fullmodel <- glm(y ~ ., data = Data, family = binomial(link = "cloglog")) forwardStep <- step(glm(y ~ 1, data = Data, family = binomial(link = "cloglog")), direction = "forward", trace = 0, scope = formula(fullmodel)) forwardCoefGLM <- coef(forwardStep) forwardCoefGLM <- forwardCoefGLM[order(names(forwardCoefGLM))] backwardStep <- step(fullmodel, direction = "backward", trace = 0) backwardCoefGLM <- coef(backwardStep) backwardCoefGLM <- backwardCoefGLM[order(names(backwardCoefGLM))] #### Checking results expect_equal(forwardCoef, forwardCoefGLM, tolerance = 1e-2) expect_equal(backwardCoef, backwardCoefGLM, tolerance = 1e-2) }) ## Poisson test_that("Testing VS methods poisson", { library(BranchGLM) set.seed(8621) x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE) x <- cbind(1, x) beta <- rnorm(11, sd = 0.1) y <- rpois(n = 1000, lambda = exp(x %*% beta)) Data <- cbind(y, x[,-1]) |> as.data.frame() ## Fitting upper model Fit <- BranchGLM(y ~ ., data = Data, family = "poisson", link = "sqrt") ### Exact Variable Selection BB <- VariableSelection(Fit, type = "Branch AND BOUnd", bestmodels = 1, metric = "AiC") BBB <- VariableSelection(Fit, type = "BackWArD Branch AND BOUnd", bestmodels = 1, metric = "aic") SBB <- VariableSelection(Fit, type = "SWITCH Branch AND BOUnd", bestmodels = 1, metric = "AIC") ### Checking results expect_equal(coef(BB), coef(BBB)) expect_equal(coef(BB), coef(SBB)) ### checking GLM fitting ind <- which(coef(BB) != 0) myCoefs <- rep(0, ncol(x)) names(myCoefs) <- rownames(coef(BB)) tempFit <- BranchGLM.fit(x[, ind, drop = FALSE], y, offset = Fit$offset, family = Fit$family, link = Fit$link) myCoefs[ind] <- tempFit$coefficients[, 1] #### Testing results expect_equal(coef(BB)[, 1], myCoefs, tolerance = 1e-4) ### Checking that forward and backward are the same as step #### VariableSelection ##### forward forward <- VariableSelection(Fit, type = "FORWARD", bestmodels = 1, metric = "AIC") forwardCoef <- coef(forward) forwardCoef <- forwardCoef[forwardCoef != 0, ] forwardCoef <- forwardCoef[order(names(forwardCoef))] ##### backward backward <- VariableSelection(Fit, type = "backWARD", bestmodels = 1, metric = "AIC") backwardCoef <- coef(backward) backwardCoef <- backwardCoef[backwardCoef != 0, ] backwardCoef <- backwardCoef[order(names(backwardCoef))] #### step fullmodel <- glm(y ~ ., data = Data, family = poisson(link = "sqrt")) forwardStep <- step(glm(y ~ 1, data = Data, family = poisson(link = "sqrt")), direction = "forward", trace = 0, scope = formula(fullmodel)) forwardCoefGLM <- coef(forwardStep) forwardCoefGLM <- forwardCoefGLM[order(names(forwardCoefGLM))] backwardStep <- step(fullmodel, direction = "backward", trace = 0) backwardCoefGLM <- coef(backwardStep) backwardCoefGLM <- backwardCoefGLM[order(names(backwardCoefGLM))] #### Checking results expect_equal(forwardCoef, forwardCoefGLM, tolerance = 1e-2) expect_equal(backwardCoef, backwardCoefGLM, tolerance = 1e-2) }) ## Testing formula with - ### This used to be problematic test_that("Testing formula with -", { library(BranchGLM) set.seed(8621) x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE) x <- cbind(1, x) beta <- rnorm(11) y <- rnorm(n = 1000, mean = x %*% beta, sd = 2) Data <- cbind(y, x) |> as.data.frame() ## Fitting upper model Fit <- BranchGLM(y ~ . - 1, data = Data, family = "gaussian", link = "identity") ### Exact Variable Selection with - BB <- VariableSelection(Fit, type = "Branch AND BOUnd", bestmodels = 1, metric = "AiC") BBB <- VariableSelection(Fit, type = "BackWArD Branch AND BOUnd", bestmodels = 1, metric = "aic") SBB <- VariableSelection(Fit, type = "SWITCH Branch AND BOUnd", bestmodels = 1, metric = "AIC") ### Exact Variable Selection without - Data <- cbind(y, x[, -1]) |> as.data.frame() Fit <- BranchGLM(y ~ ., data = Data, family = "gaussian", link = "identity") BB2 <- VariableSelection(Fit, type = "Branch AND BOUnd", bestmodels = 1, metric = "AiC", keepintercept = FALSE) BBB2 <- VariableSelection(Fit, type = "BackWArD Branch AND BOUnd", bestmodels = 1, metric = "aic", keepintercept = FALSE) SBB2 <- VariableSelection(Fit, type = "SWITCH Branch AND BOUnd", bestmodels = 1, metric = "AIC", keepintercept = FALSE) ### Checking results expect_equal(unname(coef(BB)), unname(BB2$beta)) expect_equal(unname(coef(BBB)), unname(BBB2$beta)) expect_equal(unname(coef(SBB)), unname(SBB2$beta)) })