# Testing bad inputs to functions ## BranchGLM test_that("BranchGLM bad inputs", { library(BranchGLM) set.seed(8621) x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE) x <- cbind(1, x) beta <- rnorm(11, sd = 0.1) y <- exp(x %*% beta) Data <- cbind(y, x[,-1]) |> as.data.frame() colnames(Data)[1] <- "y" ### formula expect_error(BranchGLM(1, data = Data, family = "gamma", link = "log")) expect_error(BranchGLM(1:2, data = Data, family = "gamma", link = "log")) expect_error(BranchGLM(~ ., data = Data, family = "gamma", link = "log")) expect_error(BranchGLM(y ~ apple, data = Data, family = "gamma", link = "log")) ### data expect_error(BranchGLM(y ~ ., data = cbind(y, x[, 1]), family = "gamma", link = "log")) ### family and link expect_error(BranchGLM(y ~ ., data = Data, family = 1:2, link = "log")) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = 1:2)) expect_error(BranchGLM(y ~ ., data = Data, family = "GamMA", link = "log"), NA) expect_error(BranchGLM(y ~ ., data = Data, family = "GamMA", link = "LOg"), NA) ### fitting parameters #### tol expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", tol = "apple")) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", tol = 1:2)) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", tol = -1)) #### grads expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", grads = "apple")) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", grads = 1:2)) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", grads = -1)) #### maxit expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", maxit = "apple")) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", maxit = 1:2)) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", maxit = -1)) #### nthreads expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = "apple")) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = 1:2)) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = -1)) #### parallel expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = "apple")) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = 1:2)) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = -1)) #### init expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", init = "apple")) expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", init = rep(NA_real_, 11))) #### fit expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", fit = "apple")) #### keepData expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", keepData = "apple")) #### keepY expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", keepY = "apple")) ## BranchGLM.fit ### x and y expect_error(BranchGLM.fit(NA, y, family = "gamma", link = "log")) expect_error(BranchGLM.fit(x, as.factor(round(y)), family = "gamma", link = "log")) expect_error(BranchGLM.fit(x, y[1:20], family = "gamma", link = "log")) ### offset expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", offset = x[1:20, 1])) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", offset = as.factor(round(x[, 1])))) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", offset = "apple")) ### family and link expect_error(BranchGLM.fit(x, y, family = 1:2, link = "log")) expect_error(BranchGLM.fit(x, y, family = "gamma", link = 1:2)) expect_error(BranchGLM.fit(x, y, family = "GamMA", link = "log"), NA) expect_error(BranchGLM.fit(x, y, family = "GamMA", link = "LOg"), NA) ### fitting parameters #### tol expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", tol = "apple")) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", tol = 1:2)) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", tol = -1)) #### grads expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", grads = "apple")) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", grads = 1:2)) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", grads = -1)) #### maxit expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", maxit = "apple")) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", maxit = 1:2)) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", maxit = -1)) #### nthreads expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = "apple")) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = 1:2)) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = -1)) #### parallel expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = "apple")) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = 1:2)) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = -1)) #### init expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", init = "apple")) expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", init = rep(NA_real_, 11))) }) ## predict.BranchGLM test_that("predict.BranchGLM bad inputs", { library(BranchGLM) set.seed(8621) x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE) x <- cbind(1, x) beta <- rnorm(11, sd = 0.1) y <- exp(x %*% beta) Data <- cbind(y, x[,-1]) |> as.data.frame() colnames(Data)[1] <- "y" Fit <- BranchGLM(y ~ ., data = Data, family = "gaussian", link = "identity", offset = rep(0.01, 1000)) ### newdata and offset expect_error(predict(Fit, newdata = as.matrix(Data))) expect_warning(predict(Fit, newdata = Data)) expect_error(predict(Fit, newdata = Data, offset = rep(0.01, 100))) ### type expect_error(predict(Fit, type = "apple")) expect_error(predict(Fit, type = 1:2)) expect_error(predict(Fit, newdata = Data, type = "apple")) expect_error(predict(Fit, newdata = Data, type = 1:2)) ### na.action expect_error(predict(Fit, na.action = "helper")) expect_error(predict(Fit, na.action = 1:2)) }) ## confidence intervals test_that("confidence intervals bad inputs", { library(BranchGLM) set.seed(8621) x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE) x <- cbind(1, x) beta <- rnorm(11, sd = 0.1) y <- exp(x %*% beta) Data <- cbind(y, x[,-1]) |> as.data.frame() colnames(Data)[1] <- "y" Fit <- BranchGLM(y ~ ., data = Data, family = "gaussian", link = "identity", offset = rep(0.01, 1000)) CI <- confint(Fit) ### confint.BranchGLM #### parm expect_error(confint(Fit, parm = NA)) expect_error(confint(Fit, parm = "apple")) expect_error(confint(Fit, parm = c(1, 1e6))) #### level expect_error(confint(Fit, level = -1)) expect_error(confint(Fit, level = c(0.95, 0.99))) expect_error(confint(Fit, level = "apple")) #### nthreads expect_error(confint(Fit, nthreads = -1)) expect_error(confint(Fit, nthreads = 1:2)) expect_error(confint(Fit, nthreads = "apple")) #### parallel expect_error(confint(Fit, parallel = 1:2)) expect_error(confint(Fit, parallel = "apple")) ### plot.BranchGLMCIs #### which expect_error(plot(CI, which = "apple")) expect_error(plot(CI, which = 1:100)) #### mary expect_error(plot(CI, mary = -1)) expect_error(plot(CI, mary = "apple")) expect_error(plot(CI, mary = 1:2)) ### PlotCI points <- CI$MLE #### CIs and points expect_error(plotCI(t(CI$CIs), points = points)) expect_error(plotCI("apple", points = points)) expect_error(plotCI(CI$CIs[1:10, ], points = points)) expect_error(plotCI(CI$CIs, points = points[1:2])) #### las expect_error(plotCI(CI$CIs, points = points, las = 100)) expect_error(plotCI(CI$CIs, points = points, las = 1:2)) expect_error(suppressWarnings(plotCI(CI$CIs, points = points, las = "apple"))) #### cex.y expect_error(plotCI(CI$CIs, points, cex.y = -1)) expect_error(suppressWarnings(plotCI(CI$CIs, points, cex.y = "apple"))) expect_error(plotCI(CI$CIs, points, cex.y = 1:2)) #### decreasing expect_error(plotCI(CI$CIs, points, decreasing = "apple")) expect_error(plotCI(CI$CIs, points, decreasing = c(TRUE, FALSE))) expect_error(plotCI(CI$CIs, points, decreasing = Data)) }) ## VariableSelection test_that("VariableSelection bad inputs", { library(BranchGLM) set.seed(8621) x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE) x <- cbind(1, x) beta <- rnorm(11, sd = 0.1) y <- exp(x %*% beta) Data <- cbind(y, x[,-1]) |> as.data.frame() colnames(Data)[1] <- "y" Fit <- BranchGLM(y ~ ., data = Data, family = "gaussian", link = "identity") ### keep expect_error(VariableSelection(Fit, keep = c("apple", "diag", 1))) expect_error(VariableSelection(Fit, keep = NA_character_)) ### keepintercept expect_error(VariableSelection(Fit, keepintercept = c("apple", "diag", 1))) expect_error(VariableSelection(Fit, keepintercept = NA_character_)) ### metric expect_error(VariableSelection(Fit, metric = c("AIC", "BIC"))) expect_error(VariableSelection(Fit, metric = 3)) ### type expect_error(VariableSelection(Fit, type = c("AIC", "BIC"))) expect_error(VariableSelection(Fit, type = NA_character_)) ### bestmodels expect_error(VariableSelection(Fit, bestmodels = 0)) expect_error(VariableSelection(Fit, bestmodels = 1:2)) expect_error(VariableSelection(Fit, bestmodels = "apple")) ### type expect_error(VariableSelection(Fit, cutoff = -1)) expect_error(VariableSelection(Fit, cutoff = 1:2)) expect_error(VariableSelection(Fit, cutoff = "apple")) expect_error(VariableSelection(Fit, cutoff = 2, bestmodels = 10)) ### nthreads expect_error(VariableSelection(Fit, nthreads = -1)) expect_error(VariableSelection(Fit, nthreads = 1:2)) expect_error(VariableSelection(Fit, nthreads = "apple")) ### parallel expect_error(VariableSelection(Fit, parallel = 1:2)) expect_error(VariableSelection(Fit, parallel = "apple")) ### maxsize #### maxsize now defunct # expect_error(VariableSelection(Fit, maxsize = -1)) # expect_error(VariableSelection(Fit, maxsize = 1:2)) # expect_error(VariableSelection(Fit, maxsize = "apple")) ### showprogress expect_error(VariableSelection(Fit, showprogress = -1)) expect_error(VariableSelection(Fit, showprogress = 1:2)) expect_error(VariableSelection(Fit, showprogress = "apple")) }) ## BranchGLMVS methods test_that("BranchGLMVS methods bad inputs", { library(BranchGLM) set.seed(8621) x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE) x <- cbind(1, x) beta <- rnorm(11, sd = 0.1) y <- exp(x %*% beta) Data <- cbind(y, x[,-1]) |> as.data.frame() colnames(Data)[1] <- "y" Fit <- BranchGLM(y ~ ., data = Data, family = "gaussian", link = "identity", offset = rep(0.01, 1000)) VS <- VariableSelection(Fit) ### predict.BranchGLMVS expect_error(predict(VS, newdata = as.matrix(Data))) expect_warning(predict(VS, newdata = Data)) expect_error(predict(VS, newdata = Data, offset = rep(0.01, 100))) expect_error(predict(VS, which = 0)) expect_error(predict(VS, which = 100)) expect_error(predict(VS, which = 1:2)) expect_error(predict(VS, which = "apple")) ### coef.BranchGLMVS expect_error(coef(VS, which = 0)) expect_error(coef(VS, which = 100)) expect_error(coef(VS, which = "apple")) ### plot.BranchGLMVS #### ptype expect_error(plot(VS, ptype = "apple")) expect_error(plot(VS, ptype = 1)) expect_error(plot(VS, ptype = c("variables", "variables"))) #### cols expect_error(plot(VS, cols = 1:3, ptype = "variables")) expect_error(plot(VS, cols = "red", ptype = "variables")) #### marnames expect_error(plot(VS, marnames = -1)) expect_error(plot(VS, marnames = "apple")) expect_error(plot(VS, marnames = 1:2)) #### cex expect_error(plot(VS, cex.axis = -1)) expect_error(suppressWarnings(plot(VS, cex.axis = "apple"))) expect_error(plot(VS, cex.axis = 1:2)) expect_error(plot(VS, cex.names = -1)) expect_error(suppressWarnings(plot(VS, cex.names = "apple"))) expect_error(plot(VS, cex.names = 1:2)) expect_error(plot(VS, cex.lab = -1)) expect_error(suppressWarnings(plot(VS, cex.lab = "apple"))) expect_error(plot(VS, cex.lab = 1:2)) expect_error(plot(VS, cex.legend = -1)) expect_error(suppressWarnings(plot(VS, cex.legend = "apple"))) })