### TEST-SUITE ##################################################################################### # Description: This script runs the plotting code in BoutrosLab.plotting.general for testing purposes # The plots are stored in variables and plotted together in a single multiple in order to save plot-generation time test_that( 'Run plotting functions', { ### PLOTTING FUNCTIONS ############################################################################# test.data <- data.frame( x = 1:10, y = LETTERS[1:10], z = rnorm(10), type = rep(LETTERS[1:2], 5), stringsAsFactors = TRUE ); # testing legend.grob covariate.legend <- list( legend = list( colours = default.colours(2), labels = levels(test.data$type)[1:2] ) ); legend.grob2 <- legend.grob( legends = covariate.legend ); # testing covariates.grob covariate.colours1 <- as.character(test.data$type); covariate.colours1[covariate.colours1 == 'A'] <- default.colours(2)[1]; covariate.colours1[covariate.colours1 == 'B'] <- default.colours(2)[2]; # create an object to draw the covariates from covariates1 <- list( rect = list( col = 'black', fill = covariate.colours1, lwd = 1.5 ) ); covariates.grob1 <- covariates.grob( covariates = covariates1, ord = c(1:10), side = 'top', size = .8 ); barplot <- create.barplot( formula = y ~ x, data = test.data, legend = list( bottom = list( fun = covariates.grob1 ), right = list( fun = legend.grob2 ), inside = list( fun = draw.key, args = list( key = get.corr.key( x = test.data$x, y = test.data$y, label.items = c('spearman', 'spearman.p', 'kendall', 'beta1') ) ), x = 0.5, y = 0.5 ) ), description = 'testing metadata' ); # this isn't printed anywhere dend <- create.dendrogram( x = data.frame(test.data$z, rnorm(10)) ); dotmap <- create.dotmap( x = test.data$z ); hexbin <- create.hexbinplot( formula = z ~ x, data = test.data ); # Also using generate.at.final() density <- create.densityplot( x = list( a = test.data$x, b = test.data$z ), xat = c(0, 1.1, 1.5, 1, 6, 4), yat = c(0.34, 0.38, 0.7), type = c('g', 'l'), resolution = 100 ); manhattanplot <- create.manhattanplot( formula = x ~ y, data = test.data ); polygonplot <- create.polygonplot( formula = NA ~ x, data = test.data, max = test.data$x, min = test.data$z, xlimits = c(0, 10), ylimits = c(-2, 10) ); qqcomp <- create.qqplot.comparison( x = list(test.data$x, test.data$z) ); scatter <- create.scatterplot( formula = x ~ z, data = test.data ); seg <- create.segplot( formula = y ~ x + z, data = test.data ); violin <- create.violinplot( formula = y ~ z, data = test.data ); strip <- create.stripplot( formula = z ~ y, data = test.data ); boxplot <- create.boxplot( formula = x ~ y, data = test.data ); # these do not easily join the multiplot histogram <- create.histogram( x = test.data$z ); qqfit <- create.qqplot.fit( x = test.data$z ); expect_no_error({ # Plot everything in one plot for quicker running time create.multiplot( file = NULL, plot.objects = list(polygonplot, manhattanplot, hexbin, dotmap, density, qqcomp, scatter, seg, violin, barplot, strip, boxplot) ); }); } ); test_that( 'Run helper functions', { expect_no_error({ ### HELPER FUNCTIONS ############################################################################### get.line.breaks(1:10); scientific.notation(1234, 2, type = 'list'); scientific.notation(0, 2); scientific.notation(c(1234, 1234), 1); # This returns the same thing as when type = 'expression' - should something be changed? scientific.notation(c(1234, 1234), 1, type = 'list'); display.statistical.result(1234); ### COLOUR FUNCTIONS ############################################################################### default.colours(12, is.greyscale = FALSE); default.colours(5, palette.type = 'chromosomes', is.greyscale = FALSE); default.colours(5, palette.type = 'seq'); default.colours(c(4, 4), palette.type = c('seq', 'div')); force.colour.scheme(c('stopgain snv', 'splicing'), 'annovar.annotation'); }); } );