# Loading data for testing resampling BTsubset_meta <- base::readRDS(testthat::test_path("testdata", "data-meta.rds")) BTsubset_data <- base::readRDS(testthat::test_path( "testdata", "data-query.rds" )) test_df <- gridding(BTsubset_meta, BTsubset_data) test_that("resampling runs correctly for Abundance", { skip_on_ci() skip_on_cran() set.seed(42) expect_snapshot({ result <- resampling( x = test_df, measure = "ABUNDANCE", resamps = 1L, conservative = FALSE ) }) checkmate::expect_subset( x = unique(result$Species), choices = unique(test_df$Species) ) checkmate::expect_subset( unique(result$assemblageID), unique(test_df$assemblageID) ) checkmate::expect_subset(unique(result$STUDY_ID), unique(test_df$STUDY_ID)) # subset to data sets that actually had abundance values abundance_test_df <- subset( test_df[, c("assemblageID", "STUDY_ID", "ABUNDANCE", "YEAR")], !is.na(ABUNDANCE) ) sub_test_df <- unique(abundance_test_df[, c( "assemblageID", "STUDY_ID", "YEAR" )]) result <- dplyr::semi_join( result, sub_test_df, dplyr::join_by(assemblageID, YEAR) ) # STUDY_ID expect_false(anyNA(result)) expect_lte(sum(result$ABUNDANCE), sum(abundance_test_df$ABUNDANCE)) })