requireNamespace("dplyr") requireNamespace("readr") # Load in the test checklist data system.file("extdata", "testChecklist.rda", package="BeeBDC") |> load() # Load in the test dataset beesFlagged <- BeeBDC::beesFlagged # Input a potentially difficult location on the map to test into an NA lat/lon slot beesFlagged$decimalLatitude[[1]] <- 31.887646484374983 beesFlagged$decimalLongitude[[1]] <- 78.719726562500085 beesFlagged$decimalLatitude[[2]] <- 78.719726562500085 beesFlagged$decimalLongitude[[2]] <- 31.887646484374983 testOut <- BeeBDC::countryOutlieRs( # Speed up operation by providing only the relevant entries in the testChecklist checklist = testChecklist, data = beesFlagged %>% dplyr::select(!tidyselect::any_of(c("countryMatch", ".countryOutlier","iso_a3"))), keepAdjacentCountry = FALSE, # running without a larger buffer to speed up tests pointBuffer = NULL, # Scale of map to return, one of 110, 50, 10 OR 'small', 'medium', 'large' # Smaller numbers will result in much longer calculation times. # We have not attempted a scale of 10. scale = 50) # Test the number of expected TRUE and FALSE columns and then test the output format (data frames and # tibbles are a special case of lists) testthat::test_that("countryOutlieRs results TRUE/passed", { testthat::expect_equal(sum(testOut$.countryOutlier == TRUE, na.rm = TRUE), 74) }) testthat::test_that("countryOutlieRs results FALSE/failed", { testthat::expect_equal(sum(testOut$.countryOutlier == FALSE, na.rm = TRUE), 5) }) testthat::test_that("countryOutlieRs results NA/could not assess", { testthat::expect_equal(sum(is.na(testOut$.countryOutlier)), 21) }) # Test format testthat::test_that("countryOutlieRs expected class", { testthat::expect_type(testOut, "list") }) testthat::test_that("countryOutlieRs results NA/could not assess", { testthat::expect_true( all(stringr::str_detect(attributes(testOut)$class, c("tbl_df","tbl","data.frame")))) }) # Expected number of columns matches input data testthat::test_that("countryOutlieRs number of columns", { # Remove the three columns that will be updated by this function and then test that they are # added back in. testthat::expect_equal(ncol(beesFlagged %>% dplyr::select(!tidyselect::any_of(c("countryMatch", ".countryOutlier", "iso_a3")))) + 3, ncol(testOut)) })