# test_that("simple plot PPV", { # p <- # PPV_heatmap( # min_Prevalence = 1, # max_Prevalence = 1500, # Sensitivity = 92, # limits_Specificity = c(90, 100) # ) # vdiffr::expect_doppelganger("simple plot PPV", p$p) # }) # test_that("simple plot NPV", { # p <- # PPV_heatmap( # min_Prevalence = 50, # max_Prevalence = 100, # Specificity = 92, # limits_Sensitivity = c(90, 100), # PPV_NPV = "NPV" # ) # vdiffr::expect_doppelganger("simple plot NPV", p$p) # }) # test_that("line plot", { # suppressMessages( p <- # BayesianReasoning::PPV_heatmap( # Min_Prevalence = 1, # Max_Prevalence = 1200, # Sensitivity = 81, # limits_Specificity = c(0, 100), # label_subtitle = "Prenatal screening for Down Syndrome by Age", # overlay = "line", # overlay_labels = c("40 y.o.", "35 y.o."), # overlay_position_FP = c(4.8, 4.8), # overlay_prevalence_1 = c(1, 1), # overlay_prevalence_2 = c(68, 249) # )) # # vdiffr::expect_doppelganger("line plot", p$p) # }) # test_that("area plot", { # p <- # BayesianReasoning::PPV_heatmap( # min_Prevalence = 1, # max_Prevalence = 1000, # Sensitivity = 100, # limits_Specificity = c(90, 100), # label_title = "Title plot", # label_subtitle = "Subtitle plot", # Language = "sp", # overlay = "area", # overlay_position_FP = 1, # overlay_prevalence_1 = 1, # overlay_prevalence_2 = 100 # ) # # vdiffr::expect_doppelganger("area plot", p$p) # })