R Under development (unstable) (2025-08-27 r88724 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > library(testthat) > library(BayesianMCPMod) > > test_check("BayesianMCPMod") Using default prior reference scale 7.06484551805801 Using default prior reference scale 7.1096879209905 Using default prior reference scale 7.1096879209905 Using default prior reference scale 7.1096879209905 Bayesian Multiple Comparison Procedure Significant: 0 Critical Probability: 0.95 Maximum Posterior Probability: 0.703399 Posterior Probabilities for Model Shapes lin Posterior Prob 0.703399 Significant 0 Bayesian Multiple Comparison Procedure Significant: 0 Critical Probability: 0.95 Maximum Posterior Probability: 0.703399 Posterior Probabilities for Model Shapes lin Posterior Prob 0.703399 Significant 0 Bayesian Multiple Comparison Procedure Significant: 1 Critical Probability: 0.5703569 Maximum Posterior Probability: 0.7899262 Posterior Probabilities for Model Shapes lin emax1 emax2 exp Posterior Prob 0.7598337 0.7866026 0.7899262 0.6997892 Significant 1 1 1 1 MED Assessment Selection Method: avgFit Identification Rate: 1 Dose Level: 0.5 2.0 4.0 8.0 MED Freq: 0 0 1 0 MED not reached Freq: 0 No success in MCP step Freq: 0 Model Coefficients emax e0 = 0.1, eMax = 2.5, ed50 = 1.1 exp e0 = 0.6, e1 = 3.3, delta = 16 lin e0 = 0.6, delta = 0.3 Dose Levels Ctrl = 0, DG_1 = 0.5, DG_2 = 2, DG_3 = 4, DG_4 = 8 Predictions, Maximum Effect, gAIC, avgFit Model Weights & Significance Ctrl DG_1 DG_2 DG_3 DG_4 mEff gAIC w Sign avgFit 0.5 0.8 1.2 1.7 2.7 2.2 NA NA NA emax 0.1 0.9 1.7 2.0 2.3 2.2 6.0 0.2 1.0 exp 0.6 0.7 1.1 1.6 2.8 2.2 6.2 0.2 1.0 lin 0.6 0.7 1.1 1.7 2.8 2.2 4.1 0.6 1.0 Bayesian Multiple Comparison Procedure Significant: 1 Critical Probability: 0.5703569 Maximum Posterior Probability: 0.7899262 Posterior Probabilities for Model Shapes lin emax1 emax2 exp Posterior Prob 0.7598337 0.7866026 0.7899262 0.6997892 Significant 1 1 1 1 MED Assessment Selection Method: avgFit Identification Rate: 1 Dose Level: 0.5 2.0 4.0 8.0 MED Freq: 0 0 1 0 MED not reached Freq: 0 No success in MCP step Freq: 0 Model Coefficients emax e0 = 0.1, eMax = 2.5, ed50 = 1.1 exp e0 = 0.6, e1 = 3.3, delta = 16 lin e0 = 0.6, delta = 0.3 Dose Levels Ctrl = 0, DG_1 = 0.5, DG_2 = 2, DG_3 = 4, DG_4 = 8 Predictions, Maximum Effect, gAIC, avgFit Model Weights & Significance Ctrl DG_1 DG_2 DG_3 DG_4 mEff gAIC w Sign avgFit 0.5 0.8 1.2 1.7 2.7 2.2 NA NA NA emax 0.1 0.9 1.7 2.0 2.3 2.2 6.0 0.2 1.0 exp 0.6 0.7 1.1 1.6 2.8 2.2 6.2 0.2 1.0 lin 0.6 0.7 1.1 1.7 2.8 2.2 4.1 0.6 1.0 $`Summary of Posterior Distributions` mean sd 2.5% 50.0% 97.5% Ctrl 0.9289555 3.047512 -5.446244 1.035471 6.648349 DG_1 1.0000000 3.794733 -6.437540 1.000000 8.437540 DG_2 1.2088153 3.793750 -6.235961 1.191302 8.775696 DG_3 3.0229259 4.290196 -5.858047 3.484048 9.134780 DG_4 2.3626609 6.813267 -10.991096 2.362661 15.716418 $`Maximum Difference to Control and Dose Group` max_diff DG 2.448577 3.000000 $`Posterior Distributions` $`Posterior Distributions`$Ctrl Univariate normal mixture Reference scale: 2 Mixture Components: comp1 comp2 w 0.3683102 0.6316898 m 0.0000000 1.4705882 s 3.5355339 2.5724788 $`Posterior Distributions`$DG_1 Univariate normal mixture Reference scale: 2 Mixture Components: comp1 w 1.000000 m 1.000000 s 3.794733 $`Posterior Distributions`$DG_2 Univariate normal mixture Reference scale: 2 Mixture Components: comp1 comp2 w 0.1981843 0.8018157 m 1.4312102 1.1538462 s 5.2673734 3.3282012 $`Posterior Distributions`$DG_3 Univariate normal mixture Reference scale: 2 Mixture Components: comp1 comp2 comp3 w 0.1393727 0.5599776 0.3006497 m 1.7982353 1.2461538 6.9000000 s 5.9056304 3.4729726 0.9899495 $`Posterior Distributions`$DG_4 Univariate normal mixture Reference scale: 2 Mixture Components: comp1 w 1.000000 m 2.362661 s 6.813267 attr(,"ess") numeric(0) Note: For a more detailed posterior output including covariance matricies across mixture components, please use attr(x, 'posteriorInfo').Model Coefficients lin e0 = 0.2, delta = 0.1 Dose Levels Ctr = 0, DG_1 = 2.5 Predictions, Maximum Effect, gAIC & avgFit Model Weights Ctr DG_1 mEff gAIC w avgFit 0.2 0.3 0.1 NA NA lin 0.2 0.3 0.1 4.0 1.0 [ FAIL 0 | WARN 0 | SKIP 0 | PASS 132 ] > > proc.time() user system elapsed 59.95 1.54 61.48