R Under development (unstable) (2025-03-05 r87891 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > library(testthat) > library(BayesianMCPMod) > > test_check("BayesianMCPMod") Using default prior reference scale 7.06484551805801 Using default prior reference scale 7.1096879209905 Using default prior reference scale 7.1096879209905 Using default prior reference scale 7.1096879209905 Bayesian Multiple Comparison Procedure Significant: 0 Critical Probability: 0.95 Maximum Posterior Probability: 0.7032914 Posterior Probabilities for Model Shapes lin Posterior Prob 0.7032914 Bayesian Multiple Comparison Procedure Significant: 0 Critical Probability: 0.95 Maximum Posterior Probability: 0.7032914 Posterior Probabilities for Model Shapes lin Posterior Prob 0.7032914 Bayesian Multiple Comparison Procedure Significant: 1 Critical Probability: 0.5703569 Maximum Posterior Probability: 0.6412959 Posterior Probabilities for Model Shapes lin emax1 emax2 exp Posterior Prob 0.6191201 0.6412959 0.6410572 0.5839261 MED Assessment Selection Method: avgFit Identification Rate: 1 Dose Level: 0.5 2.0 4.0 8.0 MED Freq: 0 0 1 0 MED not reached Freq: 0 No success in MCP step Freq: 0 Model Coefficients lin e0 = 0.5, delta = 0.3 emax e0 = 0, eMax = 2.2, ed50 = 0.8 exp e0 = 0.5, e1 = 3.4, delta = 16 Dose Levels Ctrl = 0, DG_1 = 0.5, DG_2 = 2, DG_3 = 4, DG_4 = 8 Predictions, Maximum Effect, gAIC, Model Weights & Significance Ctrl DG_1 DG_2 DG_3 DG_4 mEff gAIC w Sign lin 0.5 0.6 1.0 1.6 2.7 2.3 4.0 0.6 1.0 emax 0.0 0.9 1.6 1.9 2.1 2.0 6.0 0.2 1.0 exp 0.5 0.6 1.0 1.5 2.7 2.2 6.0 0.2 1.0 avgFit 0.4 0.7 1.2 1.6 2.6 2.2 NA NA 1.0 Bayesian Multiple Comparison Procedure Significant: 1 Critical Probability: 0.5703569 Maximum Posterior Probability: 0.6412959 Posterior Probabilities for Model Shapes lin emax1 emax2 exp Posterior Prob 0.6191201 0.6412959 0.6410572 0.5839261 MED Assessment Selection Method: avgFit Identification Rate: 1 Dose Level: 0.5 2.0 4.0 8.0 MED Freq: 0 0 1 0 MED not reached Freq: 0 No success in MCP step Freq: 0 Model Coefficients lin e0 = 0.5, delta = 0.3 emax e0 = 0, eMax = 2.2, ed50 = 0.8 exp e0 = 0.5, e1 = 3.4, delta = 16 Dose Levels Ctrl = 0, DG_1 = 0.5, DG_2 = 2, DG_3 = 4, DG_4 = 8 Predictions, Maximum Effect, gAIC, Model Weights & Significance Ctrl DG_1 DG_2 DG_3 DG_4 mEff gAIC w Sign lin 0.5 0.6 1.0 1.6 2.7 2.3 4.0 0.6 1.0 emax 0.0 0.9 1.6 1.9 2.1 2.0 6.0 0.2 1.0 exp 0.5 0.6 1.0 1.5 2.7 2.2 6.0 0.2 1.0 avgFit 0.4 0.7 1.2 1.6 2.6 2.2 NA NA 1.0 $Ctr Univariate normal mixture Reference scale: 9.21011 Mixture Components: comp1 comp2 robust w 0.3332982 0.1667018 0.5000000 m -12.1416870 -12.4170316 -12.2334879 s 1.2347651 2.9981883 9.3080515 $DG_1 Univariate normal mixture Reference scale: 9.308051 Mixture Components: comp1 w 1.000000 m -12.233488 s 9.308051 $DG_2 Univariate normal mixture Reference scale: 9.308051 Mixture Components: comp1 w 1.000000 m -12.233488 s 9.308051 $DG_3 Univariate normal mixture Reference scale: 9.308051 Mixture Components: comp1 w 1.000000 m -12.233488 s 9.308051 $`Summary of Posterior Distributions` mean sd 2.5% 50.0% 97.5% Ctr -12.23349 6.733127 -27.54388 -12.19502 3.076898 DG_1 -12.23349 9.308051 -30.47693 -12.23349 6.009958 DG_2 -12.23349 9.308051 -30.47693 -12.23349 6.009958 DG_3 -12.23349 9.308051 -30.47693 -12.23349 6.009958 $`Maximum Difference to Control and Dose Group` max_diff DG 0 0 $`Posterior Distributions` $`Posterior Distributions`$Ctr Univariate normal mixture Reference scale: 9.21011 Mixture Components: comp1 comp2 robust w 0.3332982 0.1667018 0.5000000 m -12.1416870 -12.4170316 -12.2334879 s 1.2347651 2.9981883 9.3080515 $`Posterior Distributions`$DG_1 Univariate normal mixture Reference scale: 9.308051 Mixture Components: comp1 w 1.000000 m -12.233488 s 9.308051 $`Posterior Distributions`$DG_2 Univariate normal mixture Reference scale: 9.308051 Mixture Components: comp1 w 1.000000 m -12.233488 s 9.308051 $`Posterior Distributions`$DG_3 Univariate normal mixture Reference scale: 9.308051 Mixture Components: comp1 w 1.000000 m -12.233488 s 9.308051 Model Coefficients lin e0 = -0.1, delta = 0.5 Dose Levels Ctr = 0, DG_1 = 2.5 Predictions, Maximum Effect, gAIC & Model Weights Ctr DG_1 mEff gAIC w lin -0.1 1.0 1.2 4.0 1.0 avgFit -0.1 1.0 1.2 NA NA [ FAIL 0 | WARN 0 | SKIP 0 | PASS 130 ] > > proc.time() user system elapsed 97.26 2.62 99.89