test_that("print.BayesianMCPMod works as intented", { expect_error(print.BayesianMCPMod()) }) test_that("print.BayesianMCP works as intented", { expect_error(print.BayesianMCP()) }) test_that("predict.ModelFits works as intented", { expect_error(predict.ModelFits()) }) test_that("s3 postList functions work as intented", { # setup library(clinDR) library(dplyr) set.seed(8080) data("metaData") testdata <- as.data.frame(metaData) dataset <- filter(testdata, bname == "BRINTELLIX") histcontrol <- filter(dataset, dose == 0, primtime == 8, indication == "MAJOR DEPRESSIVE DISORDER",protid!=6) ##Create MAP Prior hist_data <- data.frame( trial = histcontrol$nctno, est = histcontrol$rslt, se = histcontrol$se, sd = histcontrol$sd, n = histcontrol$sampsize) dose_levels <- c(0, 2.5, 5, 10) post_test_list <- getPriorList( hist_data = hist_data, dose_levels = dose_levels, robust_weight = 0.5) expect_error(summary.postList()) expect_type(summary.postList(post_test_list), "double") expect_error(print.postList()) expect_type(print(post_test_list), "list") expect_type(print.postList(post_test_list), "list") # expect_true(names(print(post_test_list)) == c("Summary of Posterior Distributions", # "Maximum Difference to Control and Dose Group", # "Posterior Distributions")) }) test_that("test modelFits s3 methods", { model_shapes <- colnames(contr_mat$contMat) dose_levels <- as.numeric(rownames(contr_mat$contMat)) model_fits <- getModelFits( models = model_shapes, dose_levels = dose_levels, posterior = posterior_list, simple = simple) pred <- predict(model_fits) pred_dosage <- predict(model_fits, doses = dose_levels) expect_type(pred, "list") expect_true(is.null(attr(pred, "doses"))) expect_identical(attr(pred_dosage, "doses"), dose_levels) expect_type(print(model_fits), "double") })