# Load the example dataset dataset <- list( "X" = simData[[1]]$X, "t" = simData[[1]]$time, "di" = simData[[1]]$status ) # Run a Bayesian Cox model ## Initial value: null model without covariates initial <- list("gamma.ini" = rep(0, ncol(dataset$X))) # Prior parameters hyperparPooled <- list( "c0" = 2, # prior of baseline hazard "tau" = 0.0375, # sd (spike) for coefficient prior "cb" = 20, # sd (slab) for coefficient prior "pi.ga" = 0.02, # prior variable selection probability for standard Cox models "a" = -4, # hyperparameter in MRF prior "b" = 0.1, # hyperparameter in MRF prior "G" = simData$G # hyperparameter in MRF prior ) test_that("burnin must be less than nIter", { expect_error(BayesSurvive(dataset, Iter = 30, burnin = 30)) })