test_that("assess_convergence and plot works for alpha and rho", { set.seed(123) mod <- compute_mallows( data = setup_rank_data(potato_visual), compute_options = set_compute_options(nmc = 50) ) p <- assess_convergence(mod) expect_equal(p$labels$x, "Iteration") expect_equal(p$labels$group, "interaction(chain, cluster)") expect_error(plot(mod), "Please specify the burnin") burnin(mod) <- 10 p <- plot(mod) expect_equal(p$labels$y, "Posterior density") expect_equal(p$labels$x, expression(alpha)) expect_error( plot(mod, parameter = "alfa"), "'arg' should be one of" ) expect_message( p <- plot(mod, parameter = "rho"), "Items not provided by user. Picking 5 at random." ) expect_equal(p$labels$y, "Posterior probability") expect_equal(p$labels$x, "rank") p <- plot(mod, parameter = "rho", items = 1) expect_equal(dim(p$data), c(2, 5)) expect_error( plot(mod, parameter = "rho", items = 33), "Unknown items." ) expect_error( plot(mod, parameter = "rho", items = "A1"), "Unknown items." ) p <- plot(mod, parameter = "rho", items = c("P3", "P5")) expect_equal(dim(p$data), c(6, 5)) expect_error( p <- assess_convergence(model_fit = mod, parameter = "rho", items = 33:34), "numeric items vector must contain indices between 1 and the number of items" ) expect_error( p <- assess_convergence(mod, parameter = "rho", items = letters[1:3]), "unknown items provided" ) p <- assess_convergence(mod, parameter = "rho", items = 1:4) expect_equal(p$labels$x, "Iteration") expect_equal(p$labels$colour, "item") expect_message( p <- assess_convergence(mod, parameter = "rho"), "Items not provided by user. Picking 5 at random." ) expect_equal(p$labels$x, "Iteration") expect_equal(p$labels$colour, "item") mod <- compute_mallows(setup_rank_data(matrix(c(1, 1, 2, 2), ncol = 2)), compute_options = set_compute_options(nmc = 5) ) p1 <- assess_convergence(mod, parameter = "rho") p2 <- assess_convergence(mod, parameter = "rho", items = 1:2) p3 <- assess_convergence(mod, parameter = "rho", items = 2:1) expect_equal(p1$labels, p2$labels) expect_equal(p1$labels, p3$labels) }) test_that("assess_convergence.BayesMallows works for Rtilde", { set.seed(123) mod <- compute_mallows( setup_rank_data(preferences = beach_preferences), compute_options = set_compute_options(nmc = 50, save_aug = TRUE) ) p <- assess_convergence( mod, parameter = "Rtilde", items = 1:4, assessors = 1:4 ) expect_equal(p$labels$x, "Iteration") expect_equal(p$labels$colour, "item") expect_error( plot(mod, parameter = "Rtilde"), "'arg' should be one of" ) expect_message( p <- assess_convergence(mod, parameter = "Rtilde", items = 1:4), "Assessors not provided by user. Picking 5 at random." ) expect_equal(p$labels$x, "Iteration") expect_equal(p$labels$colour, "item") expect_message( p <- assess_convergence(mod, parameter = "Rtilde", assessors = 1:4), "Items not provided by user. Picking 5 at random." ) expect_equal(p$labels$x, "Iteration") expect_equal(p$labels$colour, "item") expect_snapshot(p <- assess_convergence(mod, parameter = "Rtilde")) expect_equal(p$labels$x, "Iteration") expect_equal(p$labels$colour, "item") mod <- compute_mallows( setup_rank_data(preferences = subset(beach_preferences, assessor <= 3)), compute_options = set_compute_options(nmc = 50, save_aug = TRUE) ) expect_message( p <- assess_convergence(mod, parameter = "Rtilde"), "Items not provided by user. Picking 5 at random." ) mod <- compute_mallows( setup_rank_data( preferences = subset(beach_preferences, bottom_item <= 3 & top_item <= 3) ), compute_options = set_compute_options(nmc = 50, save_aug = TRUE) ) expect_snapshot(p <- assess_convergence(mod, parameter = "Rtilde")) expect_error( assess_convergence(mod, assessors = 100:103, parameter = "Rtilde"), "assessors vector must contain numeric indices between 1 and the number of assessors" ) expect_error( assess_convergence(mod, parameter = "theta"), "Theta not available. Run compute_mallows with error_model = 'bernoulli'." ) }) test_that("assess_convergence.BayesMallows works for cluster_probs", { set.seed(11) mod <- compute_mallows( setup_rank_data(rankings = cluster_data), compute_options = set_compute_options(nmc = 50, burnin = 10), model_options = set_model_options(n_clusters = 3) ) p <- assess_convergence(mod, parameter = "rho", items = 1:3) expect_equal(p$labels$x, "Iteration") expect_equal(p$labels$colour, "item") p <- plot(mod, parameter = "cluster_probs") expect_equal(dim(p$data), c(120, 4)) expect_s3_class(p, "ggplot") p <- assess_convergence(mod, parameter = "cluster_probs") expect_equal(p$labels$x, "Iteration") expect_equal(p$labels$colour, "cluster") p <- plot(mod, parameter = "cluster_assignment") expect_s3_class(p, "ggplot") expect_equal(dim(p$data), c(180, 4)) }) test_that("assess_convergence.BayesMallows works for theta", { set.seed(123) preferences <- data.frame( assessor = c(1, 1, 2, 2), bottom_item = c(1, 2, 1, 2), top_item = c(2, 1, 2, 3) ) mod <- compute_mallows( data = setup_rank_data(preferences = preferences), model_options = set_model_options(error_model = "bernoulli"), compute_options = set_compute_options(nmc = 10, burnin = 2) ) p <- assess_convergence(mod, parameter = "theta") expect_equal(p$labels$x, "Iteration") p <- plot(mod, parameter = "theta") expect_equal(dim(p$data), c(8, 3)) }) test_that("assess_convergence.BayesMallows fails properly", { mod <- compute_mallows(setup_rank_data(potato_visual), compute_options = set_compute_options(nmc = 3) ) expect_error( assess_convergence(mod, parameter = "Rtilde"), "Please rerun" ) expect_error( assess_convergence(mod, parameter = "alfa"), "'arg' should be one of" ) }) test_that("assess_convergence.BayesMallowsMixtures works", { n_clusters <- seq(from = 1, to = 3) models <- compute_mallows_mixtures( n_clusters = n_clusters, data = setup_rank_data(cluster_data), compute_options = set_compute_options(nmc = 100, include_wcd = TRUE) ) p <- assess_convergence(models) expect_equal(p$labels$linetype, "Chain") expect_equal(p$labels$colour, "Cluster") expect_equal(p$labels$x, "Iteration") expect_equal(p$labels$group, "interaction(chain, cluster)") expect_error( assess_convergence(models, parameter = "rho", items = 1:4), "'arg' should be one of" ) p <- assess_convergence(models, parameter = "cluster_probs") expect_equal(p$labels$x, "Iteration") expect_equal(p$labels$colour, "cluster") })