cl <- parallel::makeCluster(2) test_that("compute_mallows works with seed in parallel", { set.seed(1) mod <- compute_mallows( data = setup_rank_data(potato_visual), compute_options = set_compute_options(nmc = 10), cl = cl ) expect_equal(mod$rho$value[[145]], 7) expect_equal(mod$rho$value[[89]], 14) expect_true(all(apply(mod$rho_samples, 3, validate_permutation))) }) test_that("compute_mallows works with initial values and clusters", { set.seed(1) mod <- compute_mallows( setup_rank_data(potato_visual), model_options = set_model_options(n_clusters = 3), compute_options = set_compute_options(nmc = 10), initial_values = set_initial_values(alpha_init = c(2, 3)), cl = cl ) expect_true( all(subset(mod$alpha, chain == 1 & iteration == 1)$value == 2) ) expect_true( all(subset(mod$alpha, chain == 2 & iteration == 1)$value == 3) ) }) parallel::stopCluster(cl) test_that("compute_mallows fails properly", { expect_error( compute_mallows( data = setup_rank_data( cbind(potato_visual, potato_visual + 20, potato_visual + 40) ), model_options = set_model_options(metric = "spearman") ), "Exact partition function not known." ) expect_error( compute_mallows(data = potato_visual), "data must be an object of class BayesMallowsData" ) prefs <- data.frame( assessor = 1, bottom_item = c(1, 2, 3), top_item = c(2, 1, 2) ) expect_error( compute_mallows(setup_rank_data(preferences = prefs)), "Intransitive pairwise comparisons. Please specify an error model." ) expect_error( compute_mallows( data = setup_rank_data(potato_visual), initial_values = set_initial_values(rho_init = rnorm(20)) ), "rho_init must be a proper permutation" ) expect_error( compute_mallows( data = setup_rank_data(potato_visual), initial_values = set_initial_values(rho_init = 1:3) ), "initial value for rho must have one value per item" ) }) test_that("compute_mallows is platform independent", { set.seed(1) mod <- compute_mallows(setup_rank_data(potato_visual)) expect_equal(mod$alpha$value[1998], 10.2019196814125) dat <- potato_visual dat[dat > 5] <- NA mod <- compute_mallows(setup_rank_data(dat)) expect_equal(mod$alpha$value[1998], 7.26333324707436) }) test_that("compute_mallows gives prior samples", { mod <- compute_mallows( data = setup_rank_data(rankings = matrix(nrow = 0, ncol = 10)), compute_options = set_compute_options(nmc = 10) ) expect_s3_class(mod, "BayesMallows") })